Phase Noise in Real-World Twin-Field Quantum Key Distribution
- URL: http://arxiv.org/abs/2310.08621v3
- Date: Wed, 29 May 2024 08:18:49 GMT
- Title: Phase Noise in Real-World Twin-Field Quantum Key Distribution
- Authors: Gianluca Bertaina, Cecilia Clivati, Simone Donadello, Carlo Liorni, Alice Meda, Salvatore Virzì, Marco Gramegna, Marco Genovese, Filippo Levi, Davide Calonico, Massimiliano Dispenza, Ivo Pietro Degiovanni,
- Abstract summary: This work emphasizes the role of laser quality, network topology, fiber length, arm balance, and detector performance in determining key rates.
Remarkably, it reveals that the leading TF-QKD protocols are similarly affected by phase noise despite different mechanisms.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The impact of noise sources in real-world implementations of Twin-Field Quantum Key Distribution (TF-QKD) protocols is investigated, focusing on phase noise from photon sources and connecting fibers. This work emphasizes the role of laser quality, network topology, fiber length, arm balance, and detector performance in determining key rates. Remarkably, it reveals that the leading TF-QKD protocols are similarly affected by phase noise despite different mechanisms. This study demonstrates duty cycle improvements of over a factor of two through narrow-linewidth lasers and phase-control techniques, highlighting the potential synergy with high-precision time/frequency distribution services. Ultrastable lasers, evolving toward integration and miniaturization, offer promise for agile TF-QKD implementations on existing networks. Properly addressing phase noise and practical constraints allows for consistent key rate predictions, protocol selection, and layout design, crucial for establishing secure long-haul links for the Quantum Communication Infrastructures under development in several countries.
Related papers
- Controlled-Quantum secure remote sensing [0.6749750044497732]
decoherence in the quantum communication channel and during the evolution of quantum states can erode quantum sensing advantages.
We introduce a modified protocol incorporating local quantum optimal control (QOC) operations to address noise in SQS.
The protocol actively mitigates noise, enhancing the achievable quantum Fisher information (QFI) and the classical Fisher information (CFI) based on the chosen measurement strategy.
arXiv Detail & Related papers (2025-04-25T06:10:58Z) - Machine Learning assisted noise classification with Quantum Key Distribution protocols [0.7373617024876725]
We consider the quantum bit error rates (QBERs) generated in quantum key distribution schemes under consideration of different noises.
Our protocol classifies quantum noises with high accuracy under the assumption of two different scenarios.
Our method is based on classical post processing of data generated from very simplistic quantum protocols.
arXiv Detail & Related papers (2025-04-01T12:30:47Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Precise Phase Error Rate Analysis for Quantum Key Distribution with
Phase Postselection [14.638851224694692]
Quantum key distribution (QKD) stands as a pioneering method for establishing information-theoretically secure communication channels.
Here we make a precise phase error rate analysis for QKD protocols with phase postselection.
We further apply our analysis in sending-or-not-sending twin-field quantum key distribution (SNS-TFQKD) and mode-pairing quantum key distribution (MP-QKD)
arXiv Detail & Related papers (2023-12-11T13:49:40Z) - Boosting quantum key distribution via the end-to-end loss control [0.0]
We show a remarkable improvement in the quantum key distribution (QKD) performance using end-to-end line tomography.
Our approach is based on the real-time detection of interventions in the transmission channel.
Our findings provide everlastingly secure efficient quantum cryptography deployment.
arXiv Detail & Related papers (2023-08-07T17:32:14Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Asynchronous measurement-device-independent quantum key distribution
with hybrid source [6.7097515257155225]
We propose an AMDI-QKD protocol with a nonclassical light source.
We show that our proposed hybrid source protocol significantly enhances the key rate of the AMDI-QKD protocol.
arXiv Detail & Related papers (2023-04-10T13:18:48Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Towards fully-fledged quantum and classical communication over deployed
fiber with up-conversion module [47.187609203210705]
We propose and demonstrate a new method, based on up-conversion assisted receiver, for co-propagating classical light and QKD signals.
Our proposal exhibits higher tolerance for noise in comparison to the standard receiver, thus enabling the distribution of secret keys in the condition of 4 dB-higher classical power.
arXiv Detail & Related papers (2021-06-09T13:52:27Z) - Overcoming the rate-distance limit of device-independent quantum key
distribution [7.864517207531803]
Device-independent quantum key distribution (DIQKD) exploits the violation of a Bell inequality to extract secure key.
We propose a heralded DIQKD scheme based on entangled coherent states to improve entangling rates.
arXiv Detail & Related papers (2021-03-31T14:58:46Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Finite key effects in satellite quantum key distribution [0.0]
Satellite quantum communication overcomes optical fibre range limitations.
First realisations of satellite quantum key distribution (SatQKD) being rapidly developed.
limited transmission times between satellite and ground station severely constrains the amount of secret key due to finite-block size effects.
We quantify practical SatQKD performance limits and examine the effects of link efficiency, background light, source quality, and overpass to estimate long-term key generation capacity.
arXiv Detail & Related papers (2020-12-14T18:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.