Precise Phase Error Rate Analysis for Quantum Key Distribution with
Phase Postselection
- URL: http://arxiv.org/abs/2312.06385v1
- Date: Mon, 11 Dec 2023 13:49:40 GMT
- Title: Precise Phase Error Rate Analysis for Quantum Key Distribution with
Phase Postselection
- Authors: Yao Zhou, Zhen-Qiang Yin, Yang-Guang Shan, Ze-Hao Wang, Shuang Wang,
Wei Chen, Guang-Can Guo and Zheng-Fu Han
- Abstract summary: Quantum key distribution (QKD) stands as a pioneering method for establishing information-theoretically secure communication channels.
Here we make a precise phase error rate analysis for QKD protocols with phase postselection.
We further apply our analysis in sending-or-not-sending twin-field quantum key distribution (SNS-TFQKD) and mode-pairing quantum key distribution (MP-QKD)
- Score: 14.638851224694692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum key distribution (QKD) stands as a pioneering method for establishing
information-theoretically secure communication channels by utilizing the
principles of quantum mechanics. In the security proof of QKD, the phase error
rate serves as a critical indicator of information leakage and directly
influences the security of the shared key bits between communicating parties,
Alice and Bob. In estimating the upper bound of the phase error rate, phase
randomization and subsequent postselection mechanisms serve pivotal roles
across numerous QKD protocols. Here we make a precise phase error rate analysis
for QKD protocols with phase postselection, which helps us to accurately bound
the amount of information an eavesdropper may obtain. We further apply our
analysis in sending-or-not-sending twin-field quantum key distribution
(SNS-TFQKD) and mode-pairing quantum key distribution (MP-QKD). The simulation
results confirm that our precise phase error analysis can noticeably improve
the key rate performance especially over long distances in practice. Note that
our method does not require alterations to the existing experimental hardware
or protocol steps. It can be readily applied within current SNS-TF-QKD and
MP-QKD for higher key rate generation.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - Efficient Device-Independent Quantum Key Distribution [4.817429789586127]
Device-independent quantum key distribution (DIQKD) is a key distribution scheme whose security is based on the laws of quantum physics.
We propose an efficient device-independent quantum key distribution protocol in which one participant prepares states and transmits them to another participant.
arXiv Detail & Related papers (2023-11-16T13:01:34Z) - Boosting quantum key distribution via the end-to-end loss control [0.0]
We show a remarkable improvement in the quantum key distribution (QKD) performance using end-to-end line tomography.
Our approach is based on the real-time detection of interventions in the transmission channel.
Our findings provide everlastingly secure efficient quantum cryptography deployment.
arXiv Detail & Related papers (2023-08-07T17:32:14Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
The Kibble-Zurek mechanism captures the essential physics of nonequilibrium quantum phase transitions with symmetry breaking.
We experimentally tested the KZM for the simplest quantum case, a single qubit under the Landau-Zener evolution.
We report on extensive IBM-Q experiments on individual qubits embedded in different circuit environments and topologies.
arXiv Detail & Related papers (2022-08-01T18:00:02Z) - Data post-processing for the one-way heterodyne protocol under
composable finite-size security [62.997667081978825]
We study the performance of a practical continuous-variable (CV) quantum key distribution protocol.
We focus on the Gaussian-modulated coherent-state protocol with heterodyne detection in a high signal-to-noise ratio regime.
This allows us to study the performance for practical implementations of the protocol and optimize the parameters connected to the steps above.
arXiv Detail & Related papers (2022-05-20T12:37:09Z) - Numerical Method for Finite-size Security Analysis of Quantum Key
Distribution [1.2891210250935146]
We develop a finite-size security analysis against general attacks for general QKD protocols.
Our result shows that the finite-size key rate can surpass the linear key-rate bound in a realistic communication time.
arXiv Detail & Related papers (2021-11-16T09:10:56Z) - Composably secure data processing for Gaussian-modulated continuous
variable quantum key distribution [58.720142291102135]
Continuous-variable quantum key distribution (QKD) employs the quadratures of a bosonic mode to establish a secret key between two remote parties.
We consider a protocol with homodyne detection in the general setting of composable finite-size security.
In particular, we analyze the high signal-to-noise regime which requires the use of high-rate (non-binary) low-density parity check codes.
arXiv Detail & Related papers (2021-03-30T18:02:55Z) - Round-robin differential phase-time-shifting protocol for quantum key
distribution: theory and experiment [58.03659958248968]
Quantum key distribution (QKD) allows the establishment of common cryptographic keys among distant parties.
Recently, a QKD protocol that circumvents the need for monitoring signal disturbance, has been proposed and demonstrated in initial experiments.
We derive the security proofs of the round-robin differential phase-time-shifting protocol in the collective attack scenario.
Our results show that the RRDPTS protocol can achieve higher secret key rate in comparison with the RRDPS, in the condition of high quantum bit error rate.
arXiv Detail & Related papers (2021-03-15T15:20:09Z) - Sending or not sending twin-field quantum key distribution with
distinguishable decoy states [10.66830089114367]
We find the external modulation of different intensity states through the test, required in those TF-QKD with post-phase compensation, shows a side channel in frequency domain.
We propose a complete and undetected eavesdropping attack, named passive frequency shift attack, on sending or not-sending TF-QKD protocol.
Our results emphasize the importance of practical security at source and might provide a valuable reference for the practical implementation of TF-QKD.
arXiv Detail & Related papers (2021-01-27T09:37:41Z) - Afterpulsing Effect on the Baseline System Error Rate and on the
Decoy-State Quantum Key Distribution Protocols [0.0]
We develop a theoretical analysis of afterpulsing effect on the decoy-state QKD protocols for multiple detectors.
Results can be used as a guide for every practical decoy-state QKD protocol implementation in real-world deployments.
arXiv Detail & Related papers (2020-10-07T12:06:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.