論文の概要: Guiding AMR Parsing with Reverse Graph Linearization
- arxiv url: http://arxiv.org/abs/2310.08860v1
- Date: Fri, 13 Oct 2023 05:03:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 14:24:43.041087
- Title: Guiding AMR Parsing with Reverse Graph Linearization
- Title(参考訳): 逆グラフ線形化によるAMR解析の誘導
- Authors: Bofei Gao, Liang Chen, Peiyi Wang, Zhifang Sui, Baobao Chang
- Abstract要約: 本稿では,AMR解析のためのReverse Graph Linearization(RGL)フレームワークを提案する。
RGLは、AMRグラフのデフォルトおよび逆線形化順序を定義する。
提案手法は, AMR 2.0 と AMR 3.0 データセットにおいて, 従来最高の AMR 解析モデルである 0.8 と 0.5 の Smatch スコアをそれぞれ上回り, 構造損失蓄積の問題を著しく軽減することを示す。
- 参考スコア(独自算出の注目度): 45.37129580211495
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Abstract Meaning Representation (AMR) parsing aims to extract an abstract
semantic graph from a given sentence. The sequence-to-sequence approaches,
which linearize the semantic graph into a sequence of nodes and edges and
generate the linearized graph directly, have achieved good performance.
However, we observed that these approaches suffer from structure loss
accumulation during the decoding process, leading to a much lower F1-score for
nodes and edges decoded later compared to those decoded earlier. To address
this issue, we propose a novel Reverse Graph Linearization (RGL) enhanced
framework. RGL defines both default and reverse linearization orders of an AMR
graph, where most structures at the back part of the default order appear at
the front part of the reversed order and vice versa. RGL incorporates the
reversed linearization to the original AMR parser through a two-pass
self-distillation mechanism, which guides the model when generating the default
linearizations. Our analysis shows that our proposed method significantly
mitigates the problem of structure loss accumulation, outperforming the
previously best AMR parsing model by 0.8 and 0.5 Smatch scores on the AMR 2.0
and AMR 3.0 dataset, respectively. The code are available at
https://github.com/pkunlp-icler/AMR_reverse_graph_linearization.
- Abstract(参考訳): 抽象意味表現(AMR)解析は、与えられた文から抽象意味グラフを抽出することを目的としている。
セマンティクスグラフをノードとエッジの列に線形化し、線形化されたグラフを直接生成するシーケンシャル・ツー・シーケンスアプローチは、優れた性能を達成している。
しかし,これらの手法はデコードプロセス中に構造損失の蓄積に支障を来し,ノードやエッジのf1-scoreが以前のデコードに比べてはるかに低くなった。
この問題に対処するために,新しいReverse Graph Linearization(RGL)拡張フレームワークを提案する。
RGLは、AMRグラフのデフォルトおよび逆線形化順序を定義する。
rglは、デフォルト線形化を生成する際にモデルを導く2パス自己蒸留機構を通じて、逆線形化をオリジナルのamrパーサに組み込む。
提案手法は, AMR 2.0 と AMR 3.0 のデータセットにおいて, 従来最高の AMR 解析モデルを 0.8 と 0.5 の Smatch スコアで上回り, 構造損失蓄積の問題を著しく軽減することを示す。
コードはhttps://github.com/pkunlp-icler/amr_reverse_graph_linearizationで入手できる。
関連論文リスト
- Preserving Node Distinctness in Graph Autoencoders via Similarity Distillation [9.395697548237333]
グラフオートエンコーダ(GAE)は、平均二乗誤差(MSE)のような距離ベースの基準に依存して入力グラフを再構築する。
単一の再構築基準にのみ依存すると 再建されたグラフの 特徴が失われる可能性がある
我々は,再構成されたグラフにおいて,必要な相違性を維持するための簡易かつ効果的な戦略を開発した。
論文 参考訳(メタデータ) (2024-06-25T12:54:35Z) - Graph Signal Sampling for Inductive One-Bit Matrix Completion: a
Closed-form Solution [112.3443939502313]
グラフ信号解析と処理の利点を享受する統合グラフ信号サンプリングフレームワークを提案する。
キーとなる考え方は、各ユーザのアイテムのレーティングをアイテムイットグラフの頂点上の関数(信号)に変換することである。
オンライン設定では、グラフフーリエ領域における連続ランダムガウス雑音を考慮したベイズ拡張(BGS-IMC)を開発する。
論文 参考訳(メタデータ) (2023-02-08T08:17:43Z) - Variational Laplace Autoencoders [53.08170674326728]
変分オートエンコーダは、遅延変数の後部を近似するために、償却推論モデルを用いる。
完全分解ガウス仮定の限定的後部表現性に対処する新しい手法を提案する。
また、深部生成モデルのトレーニングのための変分ラプラスオートエンコーダ(VLAE)という一般的なフレームワークも提示する。
論文 参考訳(メタデータ) (2022-11-30T18:59:27Z) - GLAN: A Graph-based Linear Assignment Network [29.788755291070462]
深層グラフネットワークに基づく学習可能な線形代入問題の解法を提案する。
合成データセットによる実験結果から,本手法は最先端のベースラインよりも優れていることがわかった。
また,提案手法を一般的なマルチオブジェクトトラッキング(MOT)フレームワークに組み込んで,エンド・ツー・エンドでトラッカーをトレーニングする。
論文 参考訳(メタデータ) (2022-01-05T13:18:02Z) - Structure-aware Fine-tuning of Sequence-to-sequence Transformers for
Transition-based AMR Parsing [20.67024416678313]
我々は、一般的な事前訓練されたシーケンス・ツー・シーケンス言語モデルと構造対応のトランジション・ベース・アプローチの統合について検討する。
構造化された微調整のための事前学習言語モデルをよりよく活用するために,単純化されたトランジションセットを提案する。
提案した解析アーキテクチャは,従来の遷移に基づくアプローチの望ましい特性を維持しつつ,グラフの再分類を必要とせず,AMR 2.0の最先端技術に到達していることを示す。
論文 参考訳(メタデータ) (2021-10-29T04:36:31Z) - Unfolding Projection-free SDP Relaxation of Binary Graph Classifier via
GDPA Linearization [59.87663954467815]
アルゴリズムの展開は、モデルベースのアルゴリズムの各イテレーションをニューラルネットワーク層として実装することにより、解釈可能で類似のニューラルネットワークアーキテクチャを生成する。
本稿では、Gershgorin disc perfect alignment (GDPA)と呼ばれる最近の線形代数定理を利用して、二進グラフの半定値プログラミング緩和(SDR)のためのプロジェクションフリーアルゴリズムをアンロールする。
実験結果から,我々の未学習ネットワークは純粋モデルベースグラフ分類器よりも優れ,純粋データ駆動ネットワークに匹敵する性能を示したが,パラメータははるかに少なかった。
論文 参考訳(メタデータ) (2021-09-10T07:01:15Z) - Graph Signal Restoration Using Nested Deep Algorithm Unrolling [85.53158261016331]
グラフ信号処理は、センサー、社会交通脳ネットワーク、ポイントクラウド処理、グラフネットワークなど、多くのアプリケーションにおいてユビキタスなタスクである。
凸非依存型深部ADMM(ADMM)に基づく2つの復元手法を提案する。
提案手法のパラメータはエンドツーエンドでトレーニング可能である。
論文 参考訳(メタデータ) (2021-06-30T08:57:01Z) - A Differentiable Relaxation of Graph Segmentation and Alignment for AMR
Parsing [75.36126971685034]
我々は、アライメントとセグメンテーションをモデルの潜在変数として扱い、エンドツーエンドのトレーニングの一部としてそれらを誘導する。
また,AMRの個々の構造を扱うために手作りされたLyu2018AMRPAのセグメンテーションルールに依存するモデルにもアプローチした。
論文 参考訳(メタデータ) (2020-10-23T21:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。