論文の概要: Reassessing Graph Linearization for Sequence-to-sequence AMR Parsing: On the Advantages and Limitations of Triple-Based Encoding
- arxiv url: http://arxiv.org/abs/2505.08504v1
- Date: Tue, 13 May 2025 12:36:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-14 20:57:54.554595
- Title: Reassessing Graph Linearization for Sequence-to-sequence AMR Parsing: On the Advantages and Limitations of Triple-Based Encoding
- Title(参考訳): 逐次AMR解析のためのグラフ線形化の再評価:三重符号化の利点と限界について
- Authors: Jeongwoo Kang, Maximin Coavoux, Cédric Lopez, Didier Schwab,
- Abstract要約: 我々は、ペンマンの符号化には深いAMRグラフの制限があると主張している。
本稿では, 3次元線形化法を提案し, その効率をペンマン線形化と比較する。
- 参考スコア(独自算出の注目度): 8.04933271357397
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sequence-to-sequence models are widely used to train Abstract Meaning Representation (Banarescu et al., 2013, AMR) parsers. To train such models, AMR graphs have to be linearized into a one-line text format. While Penman encoding is typically used for this purpose, we argue that it has limitations: (1) for deep graphs, some closely related nodes are located far apart in the linearized text (2) Penman's tree-based encoding necessitates inverse roles to handle node re-entrancy, doubling the number of relation types to predict. To address these issues, we propose a triple-based linearization method and compare its efficiency with Penman linearization. Although triples are well suited to represent a graph, our results suggest room for improvement in triple encoding to better compete with Penman's concise and explicit representation of a nested graph structure.
- Abstract(参考訳): シーケンス・ツー・シーケンス・モデルは抽象的意味表現(Banarescu et al , 2013 AMR)パーサーの訓練に広く用いられている。
このようなモデルをトレーニングするには、AMRグラフを1行のテキスト形式に線形化する必要がある。
1 ディープグラフでは、関係のあるノードは線形化テキストに遠く離れている (2) Penman のツリーベースのエンコーディングは、ノードの再帰を扱うために逆ロールを必要とし、予測する関係型の数を2倍にする。
これらの問題に対処するために, 3次元線形化法を提案し, その効率をペンマン線形化と比較する。
三重グラフはグラフを表現するのに適しているが、この結果はペンマンの簡潔で明示的なグラフ構造の表現に対抗するために三重符号化を改善する余地を示唆している。
関連論文リスト
- Guiding AMR Parsing with Reverse Graph Linearization [45.37129580211495]
本稿では,AMR解析のためのReverse Graph Linearization(RGL)フレームワークを提案する。
RGLは、AMRグラフのデフォルトおよび逆線形化順序を定義する。
提案手法は, AMR 2.0 と AMR 3.0 データセットにおいて, 従来最高の AMR 解析モデルである 0.8 と 0.5 の Smatch スコアをそれぞれ上回り, 構造損失蓄積の問題を著しく軽減することを示す。
論文 参考訳(メタデータ) (2023-10-13T05:03:13Z) - Node Copying: A Random Graph Model for Effective Graph Sampling [35.957719744856696]
本稿では,グラフ上の分布を構成するノードコピーモデルを提案する。
コピーモデルの有用性を3つのタスクで示す。
提案モデルを用いて,グラフトポロジに対する敵攻撃の効果を緩和する。
論文 参考訳(メタデータ) (2022-08-04T04:04:49Z) - Embedding Graphs on Grassmann Manifold [31.42901131602713]
本稿では,グラスマン多様体に近似した2階グラフ特性を組み込んだ新しいグラフ表現学習手法EGGを提案する。
EGGの有効性はノードレベルとグラフレベルでのクラスタリングと分類タスクの両方を用いて示される。
論文 参考訳(メタデータ) (2022-05-30T12:56:24Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Order Matters: Probabilistic Modeling of Node Sequence for Graph
Generation [18.03898476141173]
グラフ生成モデルはグラフ上の分布を定義する。
グラフ上の正確な結合確率とシーケンシャルプロセスのノード順序を導出する。
我々は,従来の手法のアドホックノード順序を使わずに,この境界を最大化してグラフ生成モデルを訓練する。
論文 参考訳(メタデータ) (2021-06-11T06:37:52Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Promoting Graph Awareness in Linearized Graph-to-Text Generation [72.83863719868364]
局所グラフ構造を符号化する線形化モデルの能力を検討する。
本研究は,モデルの暗黙のグラフ符号化の品質を高めるための解法である。
これらの消音足場は、低リソース設定における下流生成の大幅な改善につながることが分かりました。
論文 参考訳(メタデータ) (2020-12-31T18:17:57Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Structure-Augmented Text Representation Learning for Efficient Knowledge
Graph Completion [53.31911669146451]
人為的な知識グラフは、様々な自然言語処理タスクに重要な支援情報を提供する。
これらのグラフは通常不完全であり、自動補完を促す。
グラフ埋め込みアプローチ(例えばTransE)は、グラフ要素を密度の高い埋め込みに表現することで構造化された知識を学ぶ。
テキストエンコーディングアプローチ(KG-BERTなど)は、グラフトリプルのテキストとトリプルレベルの文脈化表現を利用する。
論文 参考訳(メタデータ) (2020-04-30T13:50:34Z) - Wasserstein-based Graph Alignment [56.84964475441094]
我々は,より小さいグラフのノードと大きなグラフのノードをマッチングすることを目的とした,1対多のグラフアライメント問題に対する新しい定式化を行った。
提案手法は,各タスクに対する最先端のアルゴリズムに対して,大幅な改善をもたらすことを示す。
論文 参考訳(メタデータ) (2020-03-12T22:31:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。