論文の概要: SoK: Security and Privacy Risks of Medical AI
- arxiv url: http://arxiv.org/abs/2409.07415v1
- Date: Wed, 11 Sep 2024 16:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 13:41:10.303245
- Title: SoK: Security and Privacy Risks of Medical AI
- Title(参考訳): SoK:医療AIのセキュリティとプライバシリスク
- Authors: Yuanhaur Chang, Han Liu, Evin Jaff, Chenyang Lu, Ning Zhang,
- Abstract要約: テクノロジーと医療の統合は、人工知能と機械学習を利用したソフトウェアシステムが、医療製品やサービスの不可欠なコンポーネントとなった新しい時代に幕を閉じた。
本稿では、医療におけるAI/MLアプリケーションによるセキュリティとプライバシの脅威について検討する。
- 参考スコア(独自算出の注目度): 14.592921477833848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of technology and healthcare has ushered in a new era where software systems, powered by artificial intelligence and machine learning, have become essential components of medical products and services. While these advancements hold great promise for enhancing patient care and healthcare delivery efficiency, they also expose sensitive medical data and system integrity to potential cyberattacks. This paper explores the security and privacy threats posed by AI/ML applications in healthcare. Through a thorough examination of existing research across a range of medical domains, we have identified significant gaps in understanding the adversarial attacks targeting medical AI systems. By outlining specific adversarial threat models for medical settings and identifying vulnerable application domains, we lay the groundwork for future research that investigates the security and resilience of AI-driven medical systems. Through our analysis of different threat models and feasibility studies on adversarial attacks in different medical domains, we provide compelling insights into the pressing need for cybersecurity research in the rapidly evolving field of AI healthcare technology.
- Abstract(参考訳): テクノロジーと医療の統合は、人工知能と機械学習を利用したソフトウェアシステムが、医療製品やサービスの不可欠なコンポーネントとなった新しい時代に幕を閉じた。
これらの進歩は、患者のケアと医療提供の効率化に大きく貢献する一方で、機密性の高い医療データや、潜在的なサイバー攻撃に対するシステムの整合性も明らかにしている。
本稿では、医療におけるAI/MLアプリケーションによるセキュリティとプライバシの脅威について検討する。
医療分野における既存研究の徹底的な調査を通じて、医療AIシステムを対象とした敵攻撃の理解において、大きなギャップが見つかった。
医療設定のための特定の敵対的脅威モデルの概要と、脆弱なアプリケーションドメインを特定することによって、AI駆動型医療システムのセキュリティとレジリエンスを調査する将来の研究の基盤を築いた。
さまざまな脅威モデルの解析と、異なる医療領域における敵対的攻撃に関するフィージビリティスタディを通じて、急速に発展するAI医療技術分野におけるサイバーセキュリティ研究の必要性に対する説得力のある洞察を提供する。
関連論文リスト
- Towards AI-enabled Cyber Threat Assessment in the Health Sector [0.0]
このプロジェクトの目的は、医療機関の外部からセキュリティ関連情報を収集するAI対応プラットフォームを導入することである。
このプラットフォームはリスクスコアを提供し、医療機関の意思決定者をサポートし、セキュリティ対策のための投資選択を最適化する。
論文 参考訳(メタデータ) (2024-09-19T13:34:34Z) - Safety challenges of AI in medicine [23.817939398729955]
レビューでは、医療の安全性を損なう可能性のあるAIプラクティスの潜在的なリスクについて検討している。
試験は、多様な集団におけるパフォーマンス、一貫性のない運用安定性、効果的なモデルチューニングのための高品質なデータの必要性、モデルの開発とデプロイメントにおけるデータ漏洩のリスクを低減した。
本稿の第2部では、医学的文脈において、大規模言語モデル(LLM)に特有の安全性の問題について論じる。
論文 参考訳(メタデータ) (2024-09-11T13:47:47Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Progression and Challenges of IoT in Healthcare: A Short Review [0.0]
スマートヘルスケアの急成長する分野は、近い将来、かなりの収入を生み出す可能性がある。
インターネット・オブ・メディカル・モノ(IoMT)は、新型コロナウイルス(COVID-19)の感染拡大対策として、多くの国で戦略的に配備されている。
世界中のIoMTの迅速かつ広範な採用により、セキュリティとプライバシに関する問題が拡大した。
論文 参考訳(メタデータ) (2023-11-11T08:38:04Z) - White paper on cybersecurity in the healthcare sector. The HEIR solution [1.3717071154980571]
医療記録や財務情報を含む患者データは危険にさらされており、個人情報の盗難や患者の安全上の懸念につながる可能性がある。
HEIRプロジェクトは包括的なサイバーセキュリティアプローチを提供し、さまざまな規制フレームワークからセキュリティ機能を促進する。
これらの対策は、デジタルヘルスのセキュリティを強化し、機密性の高い患者データを保護し、セキュアなデータアクセスとプライバシ認識技術を促進することを目的としている。
論文 参考訳(メタデータ) (2023-10-16T07:27:57Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
医療AIに関連する技術的、臨床的、倫理的、法的リスクに関する懸念が高まっている。
この研究は、Future-AIガイドラインを、医療における信頼できるAIツールの開発とデプロイを導くための最初の国際コンセンサスフレームワークとして説明している。
論文 参考訳(メタデータ) (2023-08-11T10:49:05Z) - Edge Intelligence for Empowering IoT-based Healthcare Systems [42.909808437026136]
この記事では、スマートヘルスケアシステムにおけるAIとともに、エッジインテリジェント技術のメリットを強調します。
スマートヘルスケアシステムにおけるAIとエッジ技術の利用を促進するために、新しいスマートヘルスケアモデルが提案されている。
論文 参考訳(メタデータ) (2021-03-22T19:35:06Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Artificial intelligence in medicine and healthcare: a review and
classification of current and near-future applications and their ethical and
social Impact [0.0]
この研究は、既存のソフトウェア、パーソナルモニタリングデバイス、遺伝子検査と編集ツール、パーソナライズされたデジタルモデル、オンラインプラットフォーム、拡張現実デバイス、外科的および補助ロボティクスなど、研究技術の現状の分析に基づいている。
われわれは,「拡張パーソナライズドメディカル」の概念を提示し,解説する。
ユビキタス情報時代における医師と患者の役割の変容について研究し、医療部門を「フェイクベース」、「患者生成」、「科学的に調整」に分類し、さらに詳細な分析を必要とするいくつかの側面に注意を向ける。
論文 参考訳(メタデータ) (2020-01-22T15:39:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。