論文の概要: Enhancing Guardrails for Safe and Secure Healthcare AI
- arxiv url: http://arxiv.org/abs/2409.17190v1
- Date: Wed, 25 Sep 2024 06:30:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 16:40:36.773407
- Title: Enhancing Guardrails for Safe and Secure Healthcare AI
- Title(参考訳): 安全で安全な医療AIのためのガードレールの強化
- Authors: Ananya Gangavarapu,
- Abstract要約: 私は、医療特有のニーズに合うように、Nvidia NeMo Guardrailsのような既存のガードレールフレームワークの強化を提案します。
私は、医療におけるAIの安全で信頼性が高く正確な使用を確実にし、誤情報リスクを軽減し、患者の安全性を向上させることを目指しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI holds immense promise in addressing global healthcare access challenges, with numerous innovative applications now ready for use across various healthcare domains. However, a significant barrier to the widespread adoption of these domain-specific AI solutions is the lack of robust safety mechanisms to effectively manage issues such as hallucination, misinformation, and ensuring truthfulness. Left unchecked, these risks can compromise patient safety and erode trust in healthcare AI systems. While general-purpose frameworks like Llama Guard are useful for filtering toxicity and harmful content, they do not fully address the stringent requirements for truthfulness and safety in healthcare contexts. This paper examines the unique safety and security challenges inherent to healthcare AI, particularly the risk of hallucinations, the spread of misinformation, and the need for factual accuracy in clinical settings. I propose enhancements to existing guardrails frameworks, such as Nvidia NeMo Guardrails, to better suit healthcare-specific needs. By strengthening these safeguards, I aim to ensure the secure, reliable, and accurate use of AI in healthcare, mitigating misinformation risks and improving patient safety.
- Abstract(参考訳): ジェネレーティブAIは、グローバルなヘルスケアアクセスの課題に対処する上で大きな可能性を秘めている。
しかし、これらのドメイン固有のAIソリューションを広く採用する上で重要な障壁は、幻覚、誤報、真実性の確保といった問題を効果的に管理する堅牢な安全メカニズムの欠如である。
これらのリスクは、患者の安全と医療AIシステムの信頼を損なう可能性がある。
Llama Guardのような汎用フレームワークは毒性と有害なコンテンツをフィルタリングするのに有用だが、医療のコンテキストにおける真正さと安全性に対する厳密な要件を完全には解決していない。
本稿では,医療AI固有の安全性とセキュリティ上の課題,特に幻覚のリスク,誤報の拡散,臨床現場における現実的正確性の必要性について検討する。
私は、医療特有のニーズに合うように、Nvidia NeMo Guardrailsのような既存のガードレールフレームワークの強化を提案します。
これらの安全対策を強化することで、医療におけるAIの安全、信頼性、正確な使用を確実にし、誤情報リスクを軽減し、患者の安全性を向上させることを目指しています。
関連論文リスト
- Towards Safe AI Clinicians: A Comprehensive Study on Large Language Model Jailbreaking in Healthcare [15.438265972219869]
大規模言語モデル(LLM)は、医療アプリケーションでますます活用されている。
本研究は、6個のLDMの脆弱性を3つの高度なブラックボックスジェイルブレイク技術に系統的に評価する。
論文 参考訳(メタデータ) (2025-01-27T22:07:52Z) - Open Problems in Machine Unlearning for AI Safety [61.43515658834902]
特定の種類の知識を選択的に忘れたり、抑圧したりするマシンアンラーニングは、プライバシとデータ削除タスクの約束を示している。
本稿では,アンラーニングがAI安全性の包括的ソリューションとして機能することを防止するための重要な制約を特定する。
論文 参考訳(メタデータ) (2025-01-09T03:59:10Z) - Safeguarding Virtual Healthcare: A Novel Attacker-Centric Model for Data Security and Privacy [3.537571223616615]
遠隔医療提供は、保護された健康情報(PHI)に重大なセキュリティとプライバシのリスクをもたらした
本研究では,このようなセキュリティ事件の根本原因を調査し,攻撃者中心アプローチ(ACA)を導入する。
ACAは、全体的な攻撃に焦点を当てた視点を採用することで、既存の脅威モデルと規制フレームワークの制限に対処する。
論文 参考訳(メタデータ) (2024-12-18T02:21:53Z) - Global Challenge for Safe and Secure LLMs Track 1 [57.08717321907755]
LLM(Global Challenge for Safe and Secure Large Language Models)は、AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が主催する先駆的イニシアチブである。
本稿では,AI Singapore(AISG)とCyberSG R&D Programme Office(CRPO)が組織した先駆的イニシアチブであるLLM(Global Challenge for Safe and Secure Large Language Models)を紹介する。
論文 参考訳(メタデータ) (2024-11-21T08:20:31Z) - SoK: Security and Privacy Risks of Medical AI [14.592921477833848]
テクノロジーと医療の統合は、人工知能と機械学習を利用したソフトウェアシステムが、医療製品やサービスの不可欠なコンポーネントとなった新しい時代に幕を閉じた。
本稿では、医療におけるAI/MLアプリケーションによるセキュリティとプライバシの脅威について検討する。
論文 参考訳(メタデータ) (2024-09-11T16:59:58Z) - Safety challenges of AI in medicine in the era of large language models [23.817939398729955]
大規模言語モデル(LLM)は、医療従事者、患者、研究者に新たな機会を提供する。
AIとLLMはより強力になり、いくつかの医療タスクにおいて超人的パフォーマンスを達成するにつれ、その安全性に対する公衆の懸念が高まっている。
本稿では,LLM時代のAI利用の新たなリスクについて検討する。
論文 参考訳(メタデータ) (2024-09-11T13:47:47Z) - AI Risk Management Should Incorporate Both Safety and Security [185.68738503122114]
AIリスクマネジメントの利害関係者は、安全とセキュリティの間のニュアンス、シナジー、相互作用を意識すべきである、と私たちは主張する。
我々は、AIの安全性とAIのセキュリティの違いと相互作用を明らかにするために、統一された参照フレームワークを導入する。
論文 参考訳(メタデータ) (2024-05-29T21:00:47Z) - Towards Comprehensive Post Safety Alignment of Large Language Models via Safety Patching [74.62818936088065]
textscSafePatchingは包括的なPSAのための新しいフレームワークである。
textscSafePatchingはベースラインメソッドよりも包括的なPSAを実現する。
textscSafePatchingは、連続的なPSAシナリオにおいて、その優位性を示している。
論文 参考訳(メタデータ) (2024-05-22T16:51:07Z) - Towards Guaranteed Safe AI: A Framework for Ensuring Robust and Reliable AI Systems [88.80306881112313]
我々は、AI安全性に対する一連のアプローチを紹介し、定義する。
これらのアプローチの中核的な特徴は、高保証の定量的安全性保証を備えたAIシステムを作ることである。
これら3つのコアコンポーネントをそれぞれ作成するためのアプローチを概説し、主な技術的課題を説明し、それらに対する潜在的なソリューションをいくつか提案します。
論文 参考訳(メタデータ) (2024-05-10T17:38:32Z) - White paper on cybersecurity in the healthcare sector. The HEIR solution [1.3717071154980571]
医療記録や財務情報を含む患者データは危険にさらされており、個人情報の盗難や患者の安全上の懸念につながる可能性がある。
HEIRプロジェクトは包括的なサイバーセキュリティアプローチを提供し、さまざまな規制フレームワークからセキュリティ機能を促進する。
これらの対策は、デジタルヘルスのセキュリティを強化し、機密性の高い患者データを保護し、セキュアなデータアクセスとプライバシ認識技術を促進することを目的としている。
論文 参考訳(メタデータ) (2023-10-16T07:27:57Z) - Foveate, Attribute, and Rationalize: Towards Physically Safe and
Trustworthy AI [76.28956947107372]
包括的不安全テキストは、日常的なシナリオから生じる可能性のある特定の関心領域であり、有害なテキストを検出するのが困難である。
安全の文脈において、信頼に値する合理的な生成のために外部知識を活用する新しいフレームワークであるFARMを提案する。
実験の結果,FARMはSafeTextデータセットの最先端結果を得ることができ,安全性の分類精度が5.9%向上したことがわかった。
論文 参考訳(メタデータ) (2022-12-19T17:51:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。