論文の概要: Continuously Adapting Random Sampling (CARS) for Power Electronics
Parameter Design
- arxiv url: http://arxiv.org/abs/2310.10425v1
- Date: Mon, 16 Oct 2023 14:09:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-17 13:55:33.016608
- Title: Continuously Adapting Random Sampling (CARS) for Power Electronics
Parameter Design
- Title(参考訳): パワーエレクトロニクスパラメータ設計のための連続適応ランダムサンプリング(CARS)
- Authors: Dominik Happel, Philipp Brendel, Andreas Rosskopf, Stefan Ditze
- Abstract要約: 連続的な手法を提供するCARS(Continuously Adapting Random Sampling)が提案されている。
3つの模範的な電子ユースケースで性能が評価されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To date, power electronics parameter design tasks are usually tackled using
detailed optimization approaches with detailed simulations or using brute force
grid search grid search with very fast simulations. A new method, named
"Continuously Adapting Random Sampling" (CARS) is proposed, which provides a
continuous method in between. This allows for very fast, and / or large amounts
of simulations, but increasingly focuses on the most promising parameter
ranges. Inspirations are drawn from multi-armed bandit research and lead to
prioritized sampling of sub-domains in one high-dimensional parameter tensor.
Performance has been evaluated on three exemplary power electronic use-cases,
where resulting designs appear competitive to genetic algorithms, but
additionally allow for highly parallelizable simulation, as well as continuous
progression between explorative and exploitative settings.
- Abstract(参考訳): 現在まで、パワーエレクトロニクスのパラメータ設計タスクは、詳細なシミュレーションによる詳細な最適化アプローチや、非常に高速なシミュレーションによるブルート力グリッド探索グリッド探索によって取り組まれている。
連続的適応型ランダムサンプリング(cars)と呼ばれる新しい手法が提案されている。
これにより、非常に高速かつ/または大量のシミュレーションが可能となるが、より有望なパラメータ範囲に焦点が当てられるようになる。
インスピレーションはマルチアームのバンディット研究から導き出され、高次元のパラメータテンソル内のサブドメインの優先的なサンプリングに繋がる。
性能は3つの例で評価され、結果として得られる設計は遺伝的アルゴリズムに匹敵するように見えるが、さらに高い並列化のシミュレーションと探索的設定と搾取的設定の連続的な進行を可能にする。
関連論文リスト
- Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
本研究では, 対象物へのトラクタブル密度関数の移動として, 確率密度からサンプリングする作業に取り組む。
物理インフォームドニューラルネットワーク(PINN)を用いて各偏微分方程式(PDE)の解を近似する。
PINNはシミュレーションと離散化のない最適化を可能にし、非常に効率的に訓練することができる。
論文 参考訳(メタデータ) (2024-07-10T17:39:50Z) - Machine Learning Driven Global Optimisation Framework for Analog Circuit Design [0.0]
アナログ回路設計のための機械学習駆動最適化フレームワークを提案する。
最適化アルゴリズムを指向するために,機械学習モデルとスパイスシミュレーションを用いる。
論文 参考訳(メタデータ) (2024-02-27T03:51:00Z) - One-Dimensional Deep Image Prior for Curve Fitting of S-Parameters from
Electromagnetic Solvers [57.441926088870325]
Deep Image Prior(ディープ・イメージ・プライオリ、ディープ・イメージ・プライオリ、DIP)は、ランダムなd畳み込みニューラルネットワークの重みを最適化し、ノイズや過度な測定値からの信号に適合させる技術である。
本稿では,Vector Fitting (VF) の実装に対して,ほぼすべてのテスト例において優れた性能を示す。
論文 参考訳(メタデータ) (2023-06-06T20:28:37Z) - Generative modeling of time-dependent densities via optimal transport
and projection pursuit [3.069335774032178]
本稿では,時間的モデリングのための一般的なディープラーニングアルゴリズムの代替として,安価に提案する。
我々の手法は最先端の解法と比較して非常に競争力がある。
論文 参考訳(メタデータ) (2023-04-19T13:50:13Z) - Gait Recognition in the Wild with Multi-hop Temporal Switch [81.35245014397759]
野生での歩行認識は、より実践的な問題であり、マルチメディアとコンピュータビジョンのコミュニティの注目を集めています。
本稿では,現実のシーンにおける歩行パターンの効果的な時間的モデリングを実現するために,新しいマルチホップ時間スイッチ方式を提案する。
論文 参考訳(メタデータ) (2022-09-01T10:46:09Z) - Automated Circuit Sizing with Multi-objective Optimization based on
Differential Evolution and Bayesian Inference [1.1579778934294358]
一般化微分進化3(GDE3)とガウス過程(GP)に基づく設計最適化手法を提案する。
提案手法は,多数の設計変数を持つ複雑な回路の小型化を実現し,多くの競合対象を最適化する。
本研究では,2つの電圧レギュレータにおいて,異なるレベルの複雑さを示す手法について検討した。
論文 参考訳(メタデータ) (2022-06-06T06:48:45Z) - Simulation Paths for Quantum Circuit Simulation with Decision Diagrams [72.03286471602073]
決定図を用いて量子回路をシミュレートする際に選択される経路の重要性について検討する。
我々は、専用のシミュレーションパスを調査できるオープンソースのフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-01T19:00:11Z) - Early-Phase Performance-Driven Design using Generative Models [0.0]
本研究では,3次元モデリング環境において直接対話を行うことのできる,性能駆動型幾何生成手法を提案する。
この方法は機械学習技術を使って生成モデルをオフラインでトレーニングする。
生成モデルの潜在空間をナビゲートすることにより、所望の特性を持つ測地を迅速に生成することができる。
論文 参考訳(メタデータ) (2021-07-19T01:25:11Z) - Simulating the Time Projection Chamber responses at the MPD detector
using Generative Adversarial Networks [0.0]
本研究では、NICA加速器複合体におけるMPD実験のTime Projection Chamberトラッカーのシミュレーションを高速化するための新しいアプローチを実証する。
本手法は,任意の対象の集団分布を暗黙的に非パラメトリックに推定する深層学習手法である,生成型アドレアルネットワークに基づいている。
提案モデルの品質を評価するために,mpdソフトウェアスタックに統合し,詳細なシミュレータと同様の高品質なイベントを生成することを実証する。
論文 参考訳(メタデータ) (2020-12-08T17:57:37Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
ランダム量子回路は古典的にシミュレートするのは難しいと見なされる。
典型例の近似シミュレーションは, 正確なシミュレーションとほぼ同程度に困難であることを示す。
また、十分に浅いランダム回路はより一般的に効率的にシミュレーション可能であると推測する。
論文 参考訳(メタデータ) (2019-12-31T19:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。