論文の概要: Risk Estimation in a Markov Cost Process: Lower and Upper Bounds
- arxiv url: http://arxiv.org/abs/2310.11389v2
- Date: Thu, 11 Apr 2024 10:18:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-12 19:08:26.510644
- Title: Risk Estimation in a Markov Cost Process: Lower and Upper Bounds
- Title(参考訳): マルコフコスト過程におけるリスク推定:下・上境界
- Authors: Gugan Thoppe, L. A. Prashanth, Sanjay Bhat,
- Abstract要約: 我々はマルコフコストプロセスにおいて、無限水平割引コストのリスク対策を推定する問題に取り組む。
私たちが調査するリスク尺度には、分散、バリュー・アット・リスク(VaR)、条件付きバリュー・アット・リスク(CVaR)がある。
- 参考スコア(独自算出の注目度): 3.1484174280822845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle the problem of estimating risk measures of the infinite-horizon discounted cost within a Markov cost process. The risk measures we study include variance, Value-at-Risk (VaR), and Conditional Value-at-Risk (CVaR). First, we show that estimating any of these risk measures with $\epsilon$-accuracy, either in expected or high-probability sense, requires at least $\Omega(1/\epsilon^2)$ samples. Then, using a truncation scheme, we derive an upper bound for the CVaR and variance estimation. This bound matches our lower bound up to logarithmic factors. Finally, we discuss an extension of our estimation scheme that covers more general risk measures satisfying a certain continuity criterion, e.g., spectral risk measures, utility-based shortfall risk. To the best of our knowledge, our work is the first to provide lower and upper bounds for estimating any risk measure beyond the mean within a Markovian setting. Our lower bounds also extend to the infinite-horizon discounted costs' mean. Even in that case, our lower bound of $\Omega(1/\epsilon^2) $ improves upon the existing $\Omega(1/\epsilon)$ bound [13].
- Abstract(参考訳): 我々はマルコフコストプロセスにおいて、無限水平割引コストのリスク対策を推定する問題に取り組む。
私たちが調査するリスク尺度には、分散、バリュー・アット・リスク(VaR)、条件付きバリュー・アット・リスク(CVaR)があります。
まず,これらのリスク対策を,期待値または高い確率で推定するには,少なくとも$\Omega(1/\epsilon^2)$サンプルが必要であることを示す。
そこで, トランケーション方式を用いて, CVaRの上界と分散推定を導出する。
この境界は我々の下限から対数的因子に一致する。
最後に, ある連続性基準を満たすより一般的なリスク対策, 例えばスペクトルリスク尺度, 実用性に基づく不足リスクについて検討する。
我々の知識を最大限に活用するために、我々の研究はマルコフ的な設定における平均を超えるリスク尺度を推定するために、まず下限と上限を提供する。
我々の下限は、無限水平割引コストの平均にまで及ぶ。
その場合でも、我々の$\Omega(1/\epsilon^2) の下位境界は、既存の$\Omega(1/\epsilon)$ bound [13] で改善される。
関連論文リスト
- Optimal Excess Risk Bounds for Empirical Risk Minimization on $p$-Norm Linear Regression [19.31269916674961]
実現可能な場合、即時仮定では、$O(d)$サンプルはターゲットを正確に回復するのに十分であることを示す。
この結果は、 (1, 2)$) の場合、最小化子におけるリスクのヘッセンの存在を保証する穏やかな仮定の下で、$p in (1, 2)$ に拡張する。
論文 参考訳(メタデータ) (2023-10-19T03:21:28Z) - Near-Minimax-Optimal Risk-Sensitive Reinforcement Learning with CVaR [58.40575099910538]
本研究は,リスク許容度が$tau$のCVaR(Conditional Value at Risk)の目的に着目し,リスクに敏感な強化学習(RL)について検討する。
ミニマックスCVaRの後悔率は$Omega(sqrttau-1AK)$で、$A$はアクションの数、$K$はエピソード数である。
我々は,このアルゴリズムが連続性仮定の下で$widetilde O(tau-1sqrtSAK)$の最適後悔を達成し,一般に近似することを示す。
論文 参考訳(メタデータ) (2023-02-07T02:22:31Z) - Navigating to the Best Policy in Markov Decision Processes [68.8204255655161]
マルコフ決定過程における純粋探索問題について検討する。
エージェントはアクションを逐次選択し、結果のシステム軌道から可能な限り早くベストを目標とする。
論文 参考訳(メタデータ) (2021-06-05T09:16:28Z) - Stochastic Shortest Path: Minimax, Parameter-Free and Towards
Horizon-Free Regret [144.6358229217845]
エージェントが目標状態に到達する前に蓄積される期待コストを最小限に抑えるために,最短経路(ssp)設定で学習する問題について検討する。
我々は,経験的遷移を慎重に歪曲し,探索ボーナスで経験的コストを摂動する新しいモデルベースアルゴリズムEB-SSPを設計する。
私達はEB-SSPが$widetildeO(B_star sqrtS A K)$のミニマックスの後悔率を達成することを証明します。
論文 参考訳(メタデータ) (2021-04-22T17:20:48Z) - Risk-Averse Stochastic Shortest Path Planning [25.987787625028204]
最適、定常、マルコフの方針が存在することを示し、特別なベルマン方程式を用いて見出すことができる。
ローバーナビゲーションMDPを用いて,条件値値リスク(CVaR)とエントロピー値値リスク(EVaR)のコヒーレントリスク尺度を用いて提案手法を説明する。
論文 参考訳(メタデータ) (2021-03-26T20:49:14Z) - PAC$^m$-Bayes: Narrowing the Empirical Risk Gap in the Misspecified
Bayesian Regime [75.19403612525811]
この研究は、2つのリスク間のトレードオフを分散することでギャップを埋めることのできるマルチサンプル損失を開発する。
実証的研究は予測分布の改善を示す。
論文 参考訳(メタデータ) (2020-10-19T16:08:34Z) - Optimal Best-Arm Identification Methods for Tail-Risk Measures [9.128264779870538]
条件付きバリュー・アット・リスク(CVaR)とバリュー・アット・リスク(VaR)は金融や保険業界で人気のあるテール・アット・リスク対策である。
CVaR, VaR, CVaRの最小値の平均は, CVaR, VaR, CVaRの最小値の平均である。
論文 参考訳(メタデータ) (2020-08-17T20:23:24Z) - Sharp Statistical Guarantees for Adversarially Robust Gaussian
Classification [54.22421582955454]
逆向きに頑健な分類の過剰リスクに対する最適ミニマックス保証の最初の結果を提供する。
結果はAdvSNR(Adversarial Signal-to-Noise Ratio)の項で述べられており、これは標準的な線形分類と逆数設定との類似の考え方を一般化している。
論文 参考訳(メタデータ) (2020-06-29T21:06:52Z) - Risk-Sensitive Reinforcement Learning: Near-Optimal Risk-Sample Tradeoff
in Regret [115.85354306623368]
本研究では,未知の遷移カーネルを持つマルコフ決定過程におけるリスク感応性強化学習について検討する。
確率的に効率的なモデルレスアルゴリズムとして、リスク感性価値反復(RSVI)とリスク感性Q-ラーニング(RSQ)を提案する。
RSVIが $tildeObig(lambda(|beta| H2) cdot sqrtH3 S2AT big) に達したことを証明しています。
論文 参考訳(メタデータ) (2020-06-22T19:28:26Z) - Risk of the Least Squares Minimum Norm Estimator under the Spike
Covariance Model [0.0]
パラメータ数$d$が$n$と$fracdn rightarrow infty$に依存するとき、最小ノルム最小二乗推定子のリスクを研究する。
この設定では、最小ノルム最小二乗推定器のリスクは、ヌル推定器のリスクと比較して消える。
論文 参考訳(メタデータ) (2019-12-31T16:58:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。