Fractional Concepts in Neural Networks: Enhancing Activation and Loss
Functions
- URL: http://arxiv.org/abs/2310.11875v1
- Date: Wed, 18 Oct 2023 10:49:29 GMT
- Title: Fractional Concepts in Neural Networks: Enhancing Activation and Loss
Functions
- Authors: Zahra Alijani, Vojtech Molek
- Abstract summary: The paper presents a method for using fractional concepts in a neural network to modify the activation and loss functions.
This will enable neurons in the network to adjust their activation functions to match input data better and reduce output errors.
- Score: 0.7614628596146602
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The paper presents a method for using fractional concepts in a neural network
to modify the activation and loss functions. The methodology allows the neural
network to define and optimize its activation functions by determining the
fractional derivative order of the training process as an additional
hyperparameter. This will enable neurons in the network to adjust their
activation functions to match input data better and reduce output errors,
potentially improving the network's overall performance.
Related papers
- FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Going Beyond Neural Network Feature Similarity: The Network Feature
Complexity and Its Interpretation Using Category Theory [64.06519549649495]
We provide the definition of what we call functionally equivalent features.
These features produce equivalent output under certain transformations.
We propose an efficient algorithm named Iterative Feature Merging.
arXiv Detail & Related papers (2023-10-10T16:27:12Z) - ENN: A Neural Network with DCT Adaptive Activation Functions [2.2713084727838115]
We present Expressive Neural Network (ENN), a novel model in which the non-linear activation functions are modeled using the Discrete Cosine Transform (DCT)
This parametrization keeps the number of trainable parameters low, is appropriate for gradient-based schemes, and adapts to different learning tasks.
The performance of ENN outperforms state of the art benchmarks, providing above a 40% gap in accuracy in some scenarios.
arXiv Detail & Related papers (2023-07-02T21:46:30Z) - ASU-CNN: An Efficient Deep Architecture for Image Classification and
Feature Visualizations [0.0]
Activation functions play a decisive role in determining the capacity of Deep Neural Networks.
In this paper, a Convolutional Neural Network model named as ASU-CNN is proposed.
The network achieved promising results on both training and testing data for the classification of CIFAR-10.
arXiv Detail & Related papers (2023-05-28T16:52:25Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Unification of popular artificial neural network activation functions [0.0]
We present a unified representation of the most popular neural network activation functions.
Adopting Mittag-Leffler functions of fractional calculus, we propose a flexible and compact functional form.
arXiv Detail & Related papers (2023-02-21T21:20:59Z) - Transformers with Learnable Activation Functions [63.98696070245065]
We use Rational Activation Function (RAF) to learn optimal activation functions during training according to input data.
RAF opens a new research direction for analyzing and interpreting pre-trained models according to the learned activation functions.
arXiv Detail & Related papers (2022-08-30T09:47:31Z) - Learning Bayesian Sparse Networks with Full Experience Replay for
Continual Learning [54.7584721943286]
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered.
Existing CL approaches often keep a buffer of previously-seen samples, perform knowledge distillation, or use regularization techniques towards this goal.
We propose to only activate and select sparse neurons for learning current and past tasks at any stage.
arXiv Detail & Related papers (2022-02-21T13:25:03Z) - Otimizacao de pesos e funcoes de ativacao de redes neurais aplicadas na
previsao de series temporais [0.0]
We propose the use of a family of free parameter asymmetric activation functions for neural networks.
We show that this family of defined activation functions satisfies the requirements of the universal approximation theorem.
A methodology for the global optimization of this family of activation functions with free parameter and the weights of the connections between the processing units of the neural network is used.
arXiv Detail & Related papers (2021-07-29T23:32:15Z) - Data-Driven Learning of Feedforward Neural Networks with Different
Activation Functions [0.0]
This work contributes to the development of a new data-driven method (D-DM) of feedforward neural networks (FNNs) learning.
arXiv Detail & Related papers (2021-07-04T18:20:27Z) - Efficient Feature Transformations for Discriminative and Generative
Continual Learning [98.10425163678082]
We propose a simple task-specific feature map transformation strategy for continual learning.
Theses provide powerful flexibility for learning new tasks, achieved with minimal parameters added to the base architecture.
We demonstrate the efficacy and efficiency of our method with an extensive set of experiments in discriminative (CIFAR-100 and ImageNet-1K) and generative sequences of tasks.
arXiv Detail & Related papers (2021-03-25T01:48:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.