論文の概要: Classification-Aided Robust Multiple Target Tracking Using Neural
Enhanced Message Passing
- arxiv url: http://arxiv.org/abs/2310.12407v1
- Date: Thu, 19 Oct 2023 01:41:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-20 17:28:40.207508
- Title: Classification-Aided Robust Multiple Target Tracking Using Neural
Enhanced Message Passing
- Title(参考訳): ニューラルネットワークを用いた分類支援ロバスト多目的追跡
- Authors: Xianglong Bai and Zengfu Wang and Quan Pan and Tao Yun and Hua Lan
- Abstract要約: 本稿では,レーダーセンサによる計測を用いて,強い乱雑な環境下で未知のターゲットを追跡するという課題に対処する。
まず,統合されたメッセージパッシングによって得られた信念を付加情報としてニューラルネットワークに入力する,新しい拡張メッセージパッシング手法を提案する。
本稿では,ニューラルネットワークを用いた分類支援型ロバストなマルチターゲット追跡アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 12.135800589264532
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We address the challenge of tracking an unknown number of targets in strong
clutter environments using measurements from a radar sensor. Leveraging the
range-Doppler spectra information, we identify the measurement classes, which
serve as additional information to enhance clutter rejection and data
association, thus bolstering the robustness of target tracking. We first
introduce a novel neural enhanced message passing approach, where the beliefs
obtained by the unified message passing are fed into the neural network as
additional information. The output beliefs are then utilized to refine the
original beliefs. Then, we propose a classification-aided robust multiple
target tracking algorithm, employing the neural enhanced message passing
technique. This algorithm is comprised of three modules: a message-passing
module, a neural network module, and a Dempster-Shafer module. The
message-passing module is used to represent the statistical model by the factor
graph and infers target kinematic states, visibility states, and data
associations based on the spatial measurement information. The neural network
module is employed to extract features from range-Doppler spectra and derive
beliefs on whether a measurement is target-generated or clutter-generated. The
Dempster-Shafer module is used to fuse the beliefs obtained from both the
factor graph and the neural network. As a result, our proposed algorithm adopts
a model-and-data-driven framework, effectively enhancing clutter suppression
and data association, leading to significant improvements in multiple target
tracking performance. We validate the effectiveness of our approach using both
simulated and real data scenarios, demonstrating its capability to handle
challenging tracking scenarios in practical radar applications.
- Abstract(参考訳): 本稿では,レーダーセンサによる計測を用いて,強い乱雑な環境下で未知のターゲットを追跡するという課題に対処する。
距離・ドップラースペクトル情報を活用することで, クラッタ拒否とデータ関連付けを強化するための追加情報として用いられる計測クラスを特定し, 目標追跡の堅牢性を高める。
まず,統一されたメッセージパッシングによって得られた信念をニューラルネットワークに付加情報として供給する,ニューラルエンハンスドメッセージパッシング手法を提案する。
出力信念は、元の信念を洗練するために使われる。
そこで我々は,ニューラル拡張メッセージパッシング技術を用いて,分類支援型頑健なマルチターゲット追跡アルゴリズムを提案する。
このアルゴリズムは、メッセージパスモジュール、ニューラルネットワークモジュール、およびデンプスターシェーファーモジュールの3つのモジュールで構成されている。
メッセージパッシングモジュールは、因子グラフによって統計モデルを表現するために使用され、その空間測定情報に基づいて、対象の運動状態、可視状態、およびデータ関連を推定する。
ニューラルネットワークモジュールは、レンジドップラースペクトルから特徴を抽出し、測定がターゲット生成かクラッタ生成かの信条を導出する。
Dempster-Shaferモジュールは、因子グラフとニューラルネットワークの両方から得られた信念を融合するために使用される。
その結果,提案アルゴリズムはモデル・アンド・データ駆動型フレームワークを採用し,クラッタ抑制とデータアソシエーションを効果的に向上させ,複数の目標追跡性能を大幅に向上させた。
本手法の有効性をシミュレーションと実データの両方を用いて検証し,実用的なレーダアプリケーションにおける課題追跡シナリオの処理能力を示す。
関連論文リスト
- SeMoLi: What Moves Together Belongs Together [51.72754014130369]
動作手がかりに基づく半教師付き物体検出に挑戦する。
近年,移動物体の擬似ラベルインスタンスに対して,動きに基づくクラスタリング手法が適用可能であることが示唆された。
我々は、このアプローチを再考し、オブジェクト検出とモーションインスパイアされた擬似ラベルの両方が、データ駆動方式で取り組めることを示唆する。
論文 参考訳(メタデータ) (2024-02-29T18:54:53Z) - BSSAD: Towards A Novel Bayesian State-Space Approach for Anomaly
Detection in Multivariate Time Series [0.0]
ベイジアン状態空間異常検出(BSSAD)と呼ばれる新しい,革新的な異常検出手法を提案する。
提案手法の設計は,ベイズ状態空間アルゴリズムの次の状態予測における強みと,繰り返しニューラルネットワークとオートエンコーダの有効性を組み合わせたものである。
特に,粒子フィルタとアンサンブルカルマンフィルタのベイズ状態空間モデルの利用に着目する。
論文 参考訳(メタデータ) (2023-01-30T16:21:18Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
本稿では,3次元点雲における複数物体の同時検出と追跡手法を提案する。
本モデルでは,複数のフレームを用いた時間情報を利用してオブジェクトを検出し,一つのネットワーク上で追跡する。
論文 参考訳(メタデータ) (2022-11-01T20:59:38Z) - OST: Efficient One-stream Network for 3D Single Object Tracking in Point Clouds [6.661881950861012]
本稿では,従来のシームズネットワークで発生した相関操作を回避するために,インスタンスレベルのエンコーディングの強みを活かした新しい一ストリームネットワークを提案する。
提案手法は,クラス固有のトラッキングだけでなく,より少ない計算と高い効率でクラスに依存しないトラッキングを実現する。
論文 参考訳(メタデータ) (2022-10-16T12:31:59Z) - A Bayesian Detect to Track System for Robust Visual Object Tracking and
Semi-Supervised Model Learning [1.7268829007643391]
ニューラルネットワークの出力によってパラメータ化されたベイズ追跡・検出フレームワークにおける副次的問題について述べる。
本稿では,粒子フィルタを用いた物体状態推定のための近似サンプリングアルゴリズムを提案する。
粒子フィルタ推論アルゴリズムを用いて,間欠的なラベル付きフレーム上でのトラッキングネットワークの学習に半教師付き学習アルゴリズムを用いる。
論文 参考訳(メタデータ) (2022-05-05T00:18:57Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - Deep Feature Tracker: A Novel Application for Deep Convolutional Neural
Networks [0.0]
本稿では,特徴を確実に追跡する方法を学習できる,新しい,統合されたディープラーニングベースのアプローチを提案する。
Deep-PTと呼ばれる提案ネットワークは、畳み込みニューラルネットワークの相互相関であるトラッカーネットワークで構成されている。
ネットワークは、特徴追跡データセットに特別なデータセットがないため、複数のデータセットを使用してトレーニングされている。
論文 参考訳(メタデータ) (2021-07-30T23:24:29Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Learning data association without data association: An EM approach to
neural assignment prediction [12.970250708769708]
本稿では,データアソシエーションのためのニューラルモデルをトレーニングするための予測最大化手法を提案する。
オブジェクト認識のモデルをトレーニングするためにラベル情報を必要としない。
重要なことに、提案手法を用いてトレーニングされたネットワークは、下流追跡アプリケーションで再利用することができる。
論文 参考訳(メタデータ) (2021-05-02T01:11:09Z) - Visual Tracking by TridentAlign and Context Embedding [71.60159881028432]
本稿では,Siamese ネットワークに基づく視覚的トラッキングのための新しい TridentAlign とコンテキスト埋め込みモジュールを提案する。
提案トラッカーの性能は最先端トラッカーに匹敵するが,提案トラッカーはリアルタイムに動作可能である。
論文 参考訳(メタデータ) (2020-07-14T08:00:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。