Fluctuating parametric drive of coupled classical oscillators can simulate dissipative qubits
- URL: http://arxiv.org/abs/2310.13631v3
- Date: Thu, 14 Mar 2024 16:55:03 GMT
- Title: Fluctuating parametric drive of coupled classical oscillators can simulate dissipative qubits
- Authors: Lorenzo Bernazzani, Guido Burkard,
- Abstract summary: In particular, we answer the question whether the well-known classical analogy of the quantum dynamics of two-level systems (TLS) can be extended to simulate the dynamics of dissipative quantum systems.
We show that these contributions can be engineered in the control apparatus of those systems, discussing, in particular, the application of this theory to levitated nanoparticles and to nanostring resonators.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate a system composed of two coupled oscillators subject to stochastic fluctuations in its internal parameters. In particular, we answer the question whether the well-known classical analogy of the quantum dynamics of two-level systems (TLS), i.e. qubits, provided by two coupled oscillators can be extended to simulate the dynamics of dissipative quantum systems. In the context of nanomechanics, the analogy in the dissipation free case has already been tested in multiple experimental setups, e.g., doubly clamped or cantilever string resonators and optically levitated particles. A well-known result of this classical analogy is that the relaxation and decoherence times of the analog quantum system must be equal, i.e. $T_1=T_2$, in contrast to the general case of quantum TLS. We show that this fundamentally quantum feature, i.e. $T_1\neq T_2$, can be implemented as well in the aforementioned classical systems by adding stochastic fluctuations in their internal parameters. Moreover, we show that these stochastic contributions can be engineered in the control apparatus of those systems, discussing, in particular, the application of this theory to levitated nanoparticles and to nanostring resonators.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Markovian dynamics for a quantum/classical system and quantum trajectories [0.0]
We develop a general approach to the dynamics of quantum/classical systems.
An important feature is that, if the interaction allows for a flow of information from the quantum component to the classical one, necessarily the dynamics is dissipative.
arXiv Detail & Related papers (2024-03-24T08:26:54Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - Classical stochastic representation of quantum mechanics [0.0]
We show that the dynamics of a quantum system can be represented by the dynamics of an underlying classical systems obeying the Hamilton equations of motion.
The probabilistic character of quantum mechanics is devised by treating the wave function as a variable.
arXiv Detail & Related papers (2023-07-31T21:02:43Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Quantum-classical entropy analysis for nonlinearly-coupled
continuous-variable bipartite systems [0.0]
We investigate the behavior of classical analogs arising upon the removal of interference traits.
By comparing the quantum and classical entropy values, it is shown that, instead of entanglement production, such entropies rather provide us with information.
arXiv Detail & Related papers (2021-11-19T11:39:15Z) - Chaos in coupled Kerr-nonlinear parametric oscillators [0.0]
We investigate complex dynamics, i.e., chaos, in two coupled nondissipative KPOs at a few-photon level.
We conclude that some of them can be regarded as quantum signatures of chaos, together with energy-level spacing statistics.
arXiv Detail & Related papers (2021-10-08T10:35:12Z) - Quantum transport and localization in 1d and 2d tight-binding lattices [39.26291658500249]
Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian.
Here, we experimentally study quantum transport in one-dimensional and two-dimensional tight-binding lattices, emulated by a fully controllable $3 times 3$ array of superconducting qubits.
arXiv Detail & Related papers (2021-07-11T12:36:12Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Coherence Resonance [0.0]
coherence resonance, a phenomenon in which regularity of noise-induced oscillations is maximized at a certain optimal noise intensity, can be observed in quantum dissipative systems.
We show that this second peak of resonance is a strong quantum effect that cannot be interpreted by a semiclassical picture.
arXiv Detail & Related papers (2020-06-16T14:40:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.