Memory-augmented Query Reconstruction for LLM-based Knowledge Graph Reasoning
- URL: http://arxiv.org/abs/2503.05193v1
- Date: Fri, 07 Mar 2025 07:28:32 GMT
- Title: Memory-augmented Query Reconstruction for LLM-based Knowledge Graph Reasoning
- Authors: Mufan Xu, Gewen Liang, Kehai Chen, Wei Wang, Xun Zhou, Muyun Yang, Tiejun Zhao, Min Zhang,
- Abstract summary: Large language models (LLMs) have achieved remarkable performance on knowledge graph question answering tasks.<n>We propose Memory-augmented Query Reconstruction for LLM-based Knowledge Graph Reasoning (MemQ) to decouple LLM from tool invocation tasks.<n>MemQ achieves state-of-the-art performance on widely used benchmarks WebQSP and CWQ.
- Score: 45.74704900487982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) have achieved remarkable performance on knowledge graph question answering (KGQA) tasks by planning and interacting with knowledge graphs. However, existing methods often confuse tool utilization with knowledge reasoning, harming readability of model outputs and giving rise to hallucinatory tool invocations, which hinder the advancement of KGQA. To address this issue, we propose Memory-augmented Query Reconstruction for LLM-based Knowledge Graph Reasoning (MemQ) to decouple LLM from tool invocation tasks using LLM-built query memory. By establishing a memory module with explicit descriptions of query statements, the proposed MemQ facilitates the KGQA process with natural language reasoning and memory-augmented query reconstruction. Meanwhile, we design an effective and readable reasoning to enhance the LLM's reasoning capability in KGQA. Experimental results that MemQ achieves state-of-the-art performance on widely used benchmarks WebQSP and CWQ.
Related papers
- LightPROF: A Lightweight Reasoning Framework for Large Language Model on Knowledge Graph [57.382255728234064]
Large Language Models (LLMs) have impressive capabilities in text understanding and zero-shot reasoning.
Knowledge Graphs (KGs) provide rich and reliable contextual information for the reasoning process of LLMs.
We propose a novel Lightweight and efficient Prompt learning-ReasOning Framework for KGQA (LightPROF)
arXiv Detail & Related papers (2025-04-04T03:03:47Z) - LLM-based Discriminative Reasoning for Knowledge Graph Question Answering [42.277864969014296]
Large language models (LLMs) based on generative pre-trained Transformer have achieved remarkable performance on knowledge graph question-answering (KGQA) tasks.<n>However, LLMs often produce ungrounded subgraph planning or reasoning results in KGQA due to the hallucinatory behavior brought by the generative paradigm.<n>We propose READS to reformulate the KGQA process into discriminative subtasks, which simplifies the search space for each subtask.
arXiv Detail & Related papers (2024-12-17T08:07:16Z) - Effective Instruction Parsing Plugin for Complex Logical Query Answering on Knowledge Graphs [51.33342412699939]
Knowledge Graph Query Embedding (KGQE) aims to embed First-Order Logic (FOL) queries in a low-dimensional KG space for complex reasoning over incomplete KGs.
Recent studies integrate various external information (such as entity types and relation context) to better capture the logical semantics of FOL queries.
We propose an effective Query Instruction Parsing (QIPP) that captures latent query patterns from code-like query instructions.
arXiv Detail & Related papers (2024-10-27T03:18:52Z) - CoTKR: Chain-of-Thought Enhanced Knowledge Rewriting for Complex Knowledge Graph Question Answering [33.89497991289916]
We propose a novel rewriting method CoTKR, Chain-of-Thought Enhanced Knowledge Rewriting, for generating reasoning traces and corresponding knowledge in an interleaved manner.
We conduct experiments using various Large Language Models (LLMs) across several Knowledge Graph Question Answering (KGQA) benchmarks.
arXiv Detail & Related papers (2024-09-29T16:08:45Z) - MemLLM: Finetuning LLMs to Use An Explicit Read-Write Memory [49.96019697955383]
We introduce MemLLM, a novel method of enhancing large language models (LLMs) by integrating a structured and explicit read-and-write memory module.<n>Our experiments indicate that MemLLM enhances the LLM's performance and interpretability, in language modeling in general and knowledge-intensive tasks in particular.
arXiv Detail & Related papers (2024-04-17T18:13:16Z) - KnowledgeNavigator: Leveraging Large Language Models for Enhanced
Reasoning over Knowledge Graph [11.808990571175269]
Large language model (LLM) has achieved outstanding performance on various downstream tasks with its powerful natural language understanding and zero-shot capability, but LLM still suffers from knowledge limitation.
We propose a novel framework KnowledgeNavigator to address these challenges by efficiently and accurately retrieving external knowledge from knowledge graph.
We evaluate KnowledgeNavigator on multiple public KGQA benchmarks, the experiments show the framework has great effectiveness and generalization.
arXiv Detail & Related papers (2023-12-26T04:22:56Z) - Mitigating Large Language Model Hallucinations via Autonomous Knowledge
Graph-based Retrofitting [51.7049140329611]
This paper proposes Knowledge Graph-based Retrofitting (KGR) to mitigate factual hallucination during the reasoning process.
Experiments show that KGR can significantly improve the performance of LLMs on factual QA benchmarks.
arXiv Detail & Related papers (2023-11-22T11:08:38Z) - An In-Context Schema Understanding Method for Knowledge Base Question
Answering [70.87993081445127]
Large Language Models (LLMs) have shown strong capabilities in language understanding and can be used to solve this task.
Existing methods bypass this challenge by initially employing LLMs to generate drafts of logic forms without schema-specific details.
We propose a simple In-Context Understanding (ICSU) method that enables LLMs to directly understand schemas by leveraging in-context learning.
arXiv Detail & Related papers (2023-10-22T04:19:17Z) - RET-LLM: Towards a General Read-Write Memory for Large Language Models [53.288356721954514]
RET-LLM is a novel framework that equips large language models with a general write-read memory unit.
Inspired by Davidsonian semantics theory, we extract and save knowledge in the form of triplets.
Our framework exhibits robust performance in handling temporal-based question answering tasks.
arXiv Detail & Related papers (2023-05-23T17:53:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.