論文の概要: Unleashing the potential of prompt engineering in Large Language Models:
a comprehensive review
- arxiv url: http://arxiv.org/abs/2310.14735v1
- Date: Mon, 23 Oct 2023 09:15:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-24 21:06:47.673124
- Title: Unleashing the potential of prompt engineering in Large Language Models:
a comprehensive review
- Title(参考訳): 大規模言語モデルにおけるプロンプトエンジニアリングの可能性:包括的レビュー
- Authors: Banghao Chen, Zhaofeng Zhang, Nicolas Langren\'e, Shengxin Zhu
- Abstract要約: 大規模言語モデル(LLM)の能力を解き放つ上で,迅速なエンジニアリングが果たす重要な役割について論じる。
この調査は、ロールプロンプト、ワンショット、少数ショットプロンプトといった、プロンプトエンジニアリングの基本原則を解明する。
本稿では,異なる視点からプロンプト手法の有効性を評価し,異なる手法を用いて評価する方法について議論する。
- 参考スコア(独自算出の注目度): 1.7486006087564807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper delves into the pivotal role of prompt engineering in unleashing
the capabilities of Large Language Models (LLMs). Prompt engineering is the
process of structuring input text for LLMs and is a technique integral to
optimizing the efficacy of LLMs. This survey elucidates foundational principles
of prompt engineering, such as role-prompting, one-shot, and few-shot
prompting, as well as more advanced methodologies such as the chain-of-thought
and tree-of-thoughts prompting. The paper sheds light on how external
assistance in the form of plugins can assist in this task, and reduce machine
hallucination by retrieving external knowledge. We subsequently delineate
prospective directions in prompt engineering research, emphasizing the need for
a deeper understanding of structures and the role of agents in Artificial
Intelligence-Generated Content (AIGC) tools. We discuss how to assess the
efficacy of prompt methods from different perspectives and using different
methods. Finally, we gather information about the application of prompt
engineering in such fields as education and programming, showing its
transformative potential. This comprehensive survey aims to serve as a friendly
guide for anyone venturing through the big world of LLMs and prompt
engineering.
- Abstract(参考訳): 本稿では,Large Language Models (LLMs) の能力を解き放つ上で,プロンプトエンジニアリングが果たす重要な役割について述べる。
Prompt Engineering は LLM の入力テキストを構造化するプロセスであり、LLM の有効性を最適化するための技術である。
この調査は、ロールプロンプトやワンショット、少数ショットプロンプトといったプロンプトエンジニアリングの基本原則と、チェーン・オブ・ソートやツリー・オブ・ソート・プロンプトのようなより高度な方法論を解明する。
本論文は, プラグイン形式の外部支援が, この課題にどのように役立つか, 外部知識の獲得による機械幻覚の低減を図っている。
続いて,aigc(artificial intelligence-create content)ツールにおける構造とエージェントの役割についてより深く理解することの必要性を強調する。
本稿では,異なる視点からプロンプト手法の有効性を評価し,異なる手法を用いて評価する方法について議論する。
最後に,教育やプログラミングといった分野におけるプロンプトエンジニアリングの適用に関する情報を集め,その転換可能性を示す。
この包括的な調査は、llmとプロンプトエンジニアリングの巨大な世界を経験する誰にとっても、フレンドリーなガイドになることを目的としている。
関連論文リスト
- MLGym: A New Framework and Benchmark for Advancing AI Research Agents [51.9387884953294]
我々はMeta MLGymとMLGym-Benchを紹介した。これはAI研究タスクにおける大規模言語モデルの評価と開発のための新しいフレームワークとベンチマークである。
これは機械学習(ML)タスクのための最初のGym環境であり、そのようなエージェントをトレーニングするための強化学習(RL)アルゴリズムの研究を可能にする。
我々は、Claude-3.5-Sonnet、Llama-3.1 405B、GPT-4o、o1-preview、Gemini-1.5 Proなどのベンチマークで、多くのフロンティア大言語モデル(LLM)を評価した。
論文 参考訳(メタデータ) (2025-02-20T12:28:23Z) - Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
計算安全性は、GenAIにおける安全性の定量的評価、定式化、研究を可能にする数学的枠組みである。
ジェイルブレイクによる悪意のあるプロンプトを検出するために, 感度解析と損失景観解析がいかに有効かを示す。
我々は、AIの安全性における信号処理の鍵となる研究課題、機会、そして重要な役割について論じる。
論文 参考訳(メタデータ) (2025-02-18T02:26:50Z) - On the role of Artificial Intelligence methods in modern force-controlled manufacturing robotic tasks [0.0]
ロボットマニピュレータの強化におけるAIの役割は、スマートマニュファクチャリングにおける重要なイノベーションに急速に結びついている。
この記事では、これらのイノベーションを実効力によって制御されたアプリケーションにまとめ、高品質な生産標準を維持する必要性を強調します。
この分析は、AI技術を検証するための共通のパフォーマンスメトリクスの必要性を強調した、将来の研究方向性の視点で締めくくっている。
論文 参考訳(メタデータ) (2024-09-25T11:29:26Z) - From Linguistic Giants to Sensory Maestros: A Survey on Cross-Modal Reasoning with Large Language Models [56.9134620424985]
クロスモーダル推論(CMR)は、より高度な人工知能システムへの進化における重要な能力として、ますます認識されている。
CMRタスクに取り組むためにLLM(Large Language Models)をデプロイする最近のトレンドは、その有効性を高めるためのアプローチの新たな主流となっている。
本調査では,LLMを用いてCMRで適用された現在の方法論を,詳細な3階層分類に分類する。
論文 参考訳(メタデータ) (2024-09-19T02:51:54Z) - Explanation, Debate, Align: A Weak-to-Strong Framework for Language Model Generalization [0.6629765271909505]
本稿では,言語モデルにおける弱強一般化によるモデルアライメントの新たなアプローチを提案する。
このファシリテーションに基づくアプローチは、モデルの性能を高めるだけでなく、モデルアライメントの性質に関する洞察も提供することを示唆している。
論文 参考訳(メタデータ) (2024-09-11T15:16:25Z) - Science based AI model certification for new operational environments with application in traffic state estimation [1.2186759689780324]
さまざまなエンジニアリング領域における人工知能(AI)の役割の拡大は、AIモデルを新たな運用環境にデプロイする際の課題を強調している。
本稿では,新しい運用環境における事前学習型データ駆動モデルの適用可能性を評価するための,科学ベースの認証手法を提案する。
論文 参考訳(メタデータ) (2024-05-13T16:28:00Z) - Human-Centered AI Product Prototyping with No-Code AutoML: Conceptual Framework, Potentials and Limitations [0.0]
本稿では,AI行動の確率的性質と,プロトタイピングツールの非専門家へのアクセシビリティの制限による課題に焦点を当てる。
デザインサイエンスリサーチ(DSR)アプローチが提示され、AIプロトタイピングプロセスの改善を目的とした概念的フレームワークが完成する。
このフレームワークは、プロトタイピング中の非専門家の入力と評価のシームレスな取り込みを記述し、アクセシビリティと解釈可能性を高めるために、ノーコードAutoMLの可能性を活用している。
論文 参考訳(メタデータ) (2024-02-06T16:00:32Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Interpretable and Explainable Machine Learning Methods for Predictive
Process Monitoring: A Systematic Literature Review [1.3812010983144802]
本稿では,機械学習モデル(ML)の予測プロセスマイニングの文脈における説明可能性と解釈可能性について,系統的に検討する。
我々は、様々なアプリケーション領域にまたがる現在の方法論とその応用の概要を概観する。
我々の研究は、プロセス分析のためのより信頼性が高く透明で効果的なインテリジェントシステムの開発と実装方法について、研究者や実践者がより深く理解することを目的としている。
論文 参考訳(メタデータ) (2023-12-29T12:43:43Z) - Constrained Reinforcement Learning for Robotics via Scenario-Based
Programming [64.07167316957533]
DRLをベースとしたエージェントの性能を最適化し,その動作を保証することが重要である。
本稿では,ドメイン知識を制約付きDRLトレーニングループに組み込む新しい手法を提案する。
我々の実験は、専門家の知識を活用するために我々のアプローチを用いることで、エージェントの安全性と性能が劇的に向上することを示した。
論文 参考訳(メタデータ) (2022-06-20T07:19:38Z) - Holistic Adversarial Robustness of Deep Learning Models [91.34155889052786]
敵対的堅牢性は、安全性と信頼性を確保するために、機械学習モデルの最悪のケースパフォーマンスを研究する。
本稿では,深層学習モデルの対角的ロバスト性に関する研究課題の概要と研究手法の基礎原則について概説する。
論文 参考訳(メタデータ) (2022-02-15T05:30:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。