論文の概要: Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
- arxiv url: http://arxiv.org/abs/2310.15003v2
- Date: Sun, 09 Mar 2025 17:34:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-11 15:44:07.481551
- Title: Neural Snowflakes: Universal Latent Graph Inference via Trainable Latent Geometries
- Title(参考訳): ニューラル・スノーフレーク: トレーニング可能な潜在ジオメトリによる普遍的潜在グラフ推論
- Authors: Haitz Sáez de Ocáriz Borde, Anastasis Kratsios,
- Abstract要約: トレーニング可能なディープラーニングアーキテクチャであるニューラルスノーフレークを導入し、$mathbbRd$でフラクタル的なメトリクスを適応的に実装する。
ニューラル・スノーフレーク・モデルは,最先端の潜伏グラフ推論モデルと一致するか,あるいは上回る予測性能を達成できることを示す。
- 参考スコア(独自算出の注目度): 9.438207505148947
- License:
- Abstract: The inductive bias of a graph neural network (GNN) is largely encoded in its specified graph. Latent graph inference relies on latent geometric representations to dynamically rewire or infer a GNN's graph to maximize the GNN's predictive downstream performance, but it lacks solid theoretical foundations in terms of embedding-based representation guarantees. This paper addresses this issue by introducing a trainable deep learning architecture, coined neural snowflake, that can adaptively implement fractal-like metrics on $\mathbb{R}^d$. We prove that any given finite weights graph can be isometrically embedded by a standard MLP encoder. Furthermore, when the latent graph can be represented in the feature space of a sufficiently regular kernel, we show that the combined neural snowflake and MLP encoder do not succumb to the curse of dimensionality by using only a low-degree polynomial number of parameters in the number of nodes. This implementation enables a low-dimensional isometric embedding of the latent graph. We conduct synthetic experiments to demonstrate the superior metric learning capabilities of neural snowflakes when compared to more familiar spaces like Euclidean space. Additionally, we carry out latent graph inference experiments on graph benchmarks. Consistently, the neural snowflake model achieves predictive performance that either matches or surpasses that of the state-of-the-art latent graph inference models. Importantly, this performance improvement is achieved without requiring random search for optimal latent geometry. Instead, the neural snowflake model achieves this enhancement in a differentiable manner.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)の帰納バイアスは、その指定されたグラフに大きくエンコードされている。
潜在グラフ推論は、GNNの予測下流性能を最大化するために、GNNのグラフを動的にリワイヤしたり、推論するために潜時幾何学的表現に依存するが、埋め込みベースの表現保証の観点からは、しっかりとした理論的基盤が欠如している。
本稿では, フラクタルのようなメトリクスを$\mathbb{R}^d$で適応的に実装可能な, トレーニング可能なディープラーニングアーキテクチャであるニューラル・スノーフレークを導入することで, この問題に対処する。
任意の有限重みグラフが標準MPPエンコーダによって等尺的に埋め込み可能であることを証明した。
さらに、潜在グラフが十分に正規なカーネルの特徴空間で表現できる場合、ノード数の低次多項式数のみを用いることで、ニューラルスノーフレークとMLPエンコーダの組み合わせは次元の呪いに屈しないことを示す。
この実装により、潜在グラフの低次元等尺埋め込みが可能となる。
我々は、ユークリッド空間のようなよく知られた空間と比較して、ニューラルネットワークの優れた計量学習能力を示すために合成実験を行う。
さらに、グラフベンチマーク上で潜時グラフ推論実験を行う。
同時に、ニューラル・スノーフレーク・モデルは、最先端の潜伏グラフ推論モデルと一致するか、それ以上の予測性能を達成する。
重要なことに、この性能改善は最適潜時幾何学のランダムな探索を必要とせずに達成される。
代わりに、ニューラル・スノーフレーク・モデルは、この拡張を異なる方法で達成する。
関連論文リスト
- Graph Spring Neural ODEs for Link Sign Prediction [49.71046810937725]
本稿では,春の力によってモデル化されたグラフスプリングネットワーク(GSN)と呼ばれる新しいメッセージパッシング層アーキテクチャを提案する。
提案手法は,大規模グラフ上で最大28,000のノード生成時間高速化係数を持つ最先端手法に近い精度を実現する。
論文 参考訳(メタデータ) (2024-12-17T13:50:20Z) - Graph neural networks and non-commuting operators [4.912318087940015]
我々は,グラフトン・タプルニューラルネットワークの極限理論を開発し,それを普遍的な伝達可能性定理の証明に利用する。
我々の理論的結果は、GNNのよく知られた移動可能性定理を、複数の同時グラフの場合にまで拡張する。
得られたモデルの安定性を確実に実施する訓練手順を導出する。
論文 参考訳(メタデータ) (2024-11-06T21:17:14Z) - Generalization of Geometric Graph Neural Networks [84.01980526069075]
幾何グラフニューラルネットワーク(GNN)の一般化能力について検討する。
我々は,このGNNの最適経験リスクと最適統計リスクとの一般化ギャップを証明した。
最も重要な観察は、前の結果のようにグラフのサイズに制限されるのではなく、1つの大きなグラフで一般化能力を実現することができることである。
論文 参考訳(メタデータ) (2024-09-08T18:55:57Z) - Sketch-GNN: Scalable Graph Neural Networks with Sublinear Training Complexity [30.2972965458946]
グラフネットワーク(GNN)はノード分類などのグラフ学習問題に広く適用されている。
GNNの基盤となるグラフをより大きなサイズにスケールアップする場合、完全なグラフをトレーニングするか、あるいは完全なグラフの隣接とノードのメモリへの埋め込みを維持せざるを得ません。
本稿では,学習時間と記憶量がグラフサイズに比例して増加するスケッチベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-21T18:22:11Z) - GRAN is superior to GraphRNN: node orderings, kernel- and graph
embeddings-based metrics for graph generators [0.6816499294108261]
本研究では,グラフ不変量の分布に関するカーネルベースのメトリクスと,グラフ埋め込み空間における多様体ベースのメトリクスとカーネルベースのメトリクスについて検討する。
グラフの2つのよく知られた生成モデルであるGraphRNNとGRANを比較し、ノード順序の影響を明らかにする。
論文 参考訳(メタデータ) (2023-07-13T12:07:39Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
グラフニューラルネットワーク(GNN)は、ネットワーク化されたデータの意味のあるパターンを活用するために、グラフ畳み込みに依存している。
我々は,成長するグラフ列の極限オブジェクトであるグラフオンを利用して,非常に大きなグラフ上のGNNを学習することを提案する。
論文 参考訳(メタデータ) (2022-10-27T16:00:45Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
グラフニューラルネットワーク(GNN)は、構造データのモデリングにおいて強力な能力を示している。
GMPTと呼ばれる新しいグラフマッチングベースのGNN事前学習フレームワークを提案する。
提案手法は,完全自己指導型プレトレーニングと粗粒型プレトレーニングに適用できる。
論文 参考訳(メタデータ) (2022-03-03T09:53:53Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの表現学習において大きな成功を収めている。
本稿では,AKGNN(Adaptive Kernel Graph Neural Network)という新しいフレームワークを提案する。
AKGNNは、最初の試みで最適なグラフカーネルに統一的に適応することを学ぶ。
評価されたベンチマークデータセットで実験を行い、提案したAKGNNの優れた性能を示す有望な結果を得た。
論文 参考訳(メタデータ) (2021-12-08T20:23:58Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
本稿では,このグラフからBernoulliをサンプリングしたグラフ上でGNNをトレーニングすることで,WNN(Graphon Neural Network)を学習する問題を考察する。
これらの結果から着想を得た大規模グラフ上でGNNを学習するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-07T15:05:59Z) - Optimal Transport Graph Neural Networks [31.191844909335963]
現在のグラフニューラルネットワーク(GNN)アーキテクチャは、集約グラフ表現に平均または総和ノードを埋め込む。
本稿では,パラメトリックプロトタイプを用いたグラフ埋め込み計算モデルOT-GNNを紹介する。
論文 参考訳(メタデータ) (2020-06-08T14:57:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。