論文の概要: Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation
- arxiv url: http://arxiv.org/abs/2310.17463v2
- Date: Wed, 3 Apr 2024 14:49:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 22:56:57.451372
- Title: Bayesian Neural Controlled Differential Equations for Treatment Effect Estimation
- Title(参考訳): ベイジアンニューラル制御による処理効果推定のための微分方程式
- Authors: Konstantin Hess, Valentyn Melnychuk, Dennis Frauen, Stefan Feuerriegel,
- Abstract要約: 本研究では,連続時間における治療効果推定のための新しいベイズ型ニューラルネットワーク微分方程式 (BNCDE) を提案する。
本手法は医療における信頼性の高い意思決定を促進するための直接的な実用的価値である。
- 参考スコア(独自算出の注目度): 25.068617118126824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Treatment effect estimation in continuous time is crucial for personalized medicine. However, existing methods for this task are limited to point estimates of the potential outcomes, whereas uncertainty estimates have been ignored. Needless to say, uncertainty quantification is crucial for reliable decision-making in medical applications. To fill this gap, we propose a novel Bayesian neural controlled differential equation (BNCDE) for treatment effect estimation in continuous time. In our BNCDE, the time dimension is modeled through a coupled system of neural controlled differential equations and neural stochastic differential equations, where the neural stochastic differential equations allow for tractable variational Bayesian inference. Thereby, for an assigned sequence of treatments, our BNCDE provides meaningful posterior predictive distributions of the potential outcomes. To the best of our knowledge, ours is the first tailored neural method to provide uncertainty estimates of treatment effects in continuous time. As such, our method is of direct practical value for promoting reliable decision-making in medicine.
- Abstract(参考訳): パーソナライズされた医療には, 連続的な治療効果の推定が不可欠である。
しかし、このタスクの既存の手法は潜在的な結果の点推定に限られているが、不確実性評価は無視されている。
言うまでもなく、医療応用における信頼性の高い意思決定には不確実性の定量化が不可欠である。
このギャップを埋めるために、連続時間での処理効果推定のための新しいベイズニューラルネットワーク微分方程式(BNCDE)を提案する。
我々のBNCDEでは、時間次元は、ニューラル制御微分方程式とニューラル確率微分方程式の結合系を通してモデル化される。
そこでBNCDEは, 与えられた治療の順序に対して, 潜在的結果の有意な後続の予測分布を提供する。
我々の知識を最大限に活用するために、我々の研究は、連続した時間における治療効果の不確かさを推定する最初の調整されたニューラルネットワーク手法である。
このように,医療における信頼性の高い意思決定を促進するために,本手法は直接的に有用である。
関連論文リスト
- Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner [72.20769640318969]
医療の安全性と有効性を理解するためには,観測データから因果量の推定が重要である。
医療従事者は、平均因果量の推定だけでなく、治療効果のランダム性をランダムな変数として理解する必要がある。
このランダム性はアレタリック不確実性と呼ばれ、治療効果の利益や量子化の確率を理解するために必要である。
論文 参考訳(メタデータ) (2024-11-05T18:14:49Z) - Uncertainty-Aware Optimal Treatment Selection for Clinical Time Series [4.656302602746229]
本稿では,非現実的推定手法と不確実性定量化を組み合わせた新しい手法を提案する。
本手法は2つのシミュレーションデータセットを用いて検証し,1つは心血管系,もう1つはCOVID-19に焦点を当てた。
提案手法は, 異なる推定基準値にまたがって頑健な性能を示すことを示す。
論文 参考訳(メタデータ) (2024-10-11T13:56:25Z) - Individualized Multi-Treatment Response Curves Estimation using RBF-net with Shared Neurons [1.1119247609126184]
反応曲線の非パラメトリックモデリングは、共有された隠れニューロンを持つ放射基底関数(RBF)-ネットに依存している。
本手法をMIMICデータに適用し, 在宅中絶患者に対するICU滞在時間と12時間SOFAスコアに対する異なる治療方法の効果に関する興味深い知見を得た。
論文 参考訳(メタデータ) (2024-01-29T21:13:01Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
ニューラルモデルのトレーニング目的に直接キャリブレーション項を含めることを提案する。
古典的なキャリブレーション誤差の定式化を緩和することにより、エンドツーエンドのバックプロパゲーションを可能にする。
既存の計算パイプラインに直接適用でき、信頼性の高いブラックボックス後部推論が可能である。
論文 参考訳(メタデータ) (2023-10-20T10:20:45Z) - Doubly Robust Proximal Causal Learning for Continuous Treatments [56.05592840537398]
本稿では,カーネルベースの2倍頑健な因果学習推定器を提案する。
オラクル形式は影響関数の一貫した近似であることを示す。
次に、平均二乗誤差の観点から総合収束解析を行う。
論文 参考訳(メタデータ) (2023-09-22T12:18:53Z) - Improving Image-Based Precision Medicine with Uncertainty-Aware Causal
Models [3.5770353345663053]
ベイジアンディープラーニング(英語版)を用いて、いくつかの治療における現実的および対実的な結果に対する後部分布を推定する。
本モデルを用いて,多発性硬化症患者のMR脳画像の多施設データセットを用いて,今後新たなT2病変数を予測し,評価する。
論文 参考訳(メタデータ) (2023-05-05T20:08:40Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
反現実的な結果を予測することは、パーソナライズされたヘルスケアをアンロックする可能性がある。
既存の因果推論アプローチでは、観察と治療決定の間の通常の離散時間間隔が考慮されている。
そこで本研究では,腫瘍増殖モデルに基づく制御可能なシミュレーション環境を提案する。
論文 参考訳(メタデータ) (2022-06-16T17:15:15Z) - Predicting the impact of treatments over time with uncertainty aware
neural differential equations [2.099922236065961]
本稿では,治療の効果を時間とともに予測する新しい手法であるCounterfactual ODEを提案する。
CF-ODEが従来よりも精度の高い予測と信頼性の高い不確実性推定を提供することを示す。
論文 参考訳(メタデータ) (2022-02-24T09:50:02Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
時系列データから不均一な処理効果を推定する問題について検討する。
本稿では,バランス表現に基づく治療特異的ハザード推定のための新しいディープラーニング手法を提案する。
論文 参考訳(メタデータ) (2021-10-26T20:13:17Z) - Estimating Average Treatment Effects via Orthogonal Regularization [18.586616164230566]
従来の方法は根拠のない結果に基づいて成果を見積もるが、根拠のない結果に課されるいかなる制約も無視する。
非定常性を利用した平均治療効果を推定するための新しい正規化フレームワークを提案する。
我々はDONUTが最先端技術を大幅に上回っていることを実証する。
論文 参考訳(メタデータ) (2021-01-21T08:05:35Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
ランダム化実験による因果効果の推定は臨床研究の中心である。
歴史的借用法のほとんどは、厳格なタイプiエラー率制御を犠牲にして分散の削減を達成する。
論文 参考訳(メタデータ) (2020-12-17T21:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。