論文の概要: Electrical Load Forecasting in Smart Grid: A Personalized Federated Learning Approach
- arxiv url: http://arxiv.org/abs/2411.10619v1
- Date: Fri, 15 Nov 2024 22:44:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:26:36.762136
- Title: Electrical Load Forecasting in Smart Grid: A Personalized Federated Learning Approach
- Title(参考訳): スマートグリッドにおける電力負荷予測:個人化フェデレーション学習アプローチ
- Authors: Ratun Rahman, Neeraj Kumar, Dinh C. Nguyen,
- Abstract要約: スマートグリッドの電力管理と安定性には電力負荷予測が不可欠である。
従来の機械学習(ML)手法は負荷予測によく使用されるが、データ共有は必要である。
フェデレートラーニング(FL)は、データ交換なしでローカルSMで分散MLモデルを実行することでこの問題に対処できる。
- 参考スコア(独自算出の注目度): 9.687203504689563
- License:
- Abstract: Electric load forecasting is essential for power management and stability in smart grids. This is mainly achieved via advanced metering infrastructure, where smart meters (SMs) are used to record household energy consumption. Traditional machine learning (ML) methods are often employed for load forecasting but require data sharing which raises data privacy concerns. Federated learning (FL) can address this issue by running distributed ML models at local SMs without data exchange. However, current FL-based approaches struggle to achieve efficient load forecasting due to imbalanced data distribution across heterogeneous SMs. This paper presents a novel personalized federated learning (PFL) method to load prediction under non-independent and identically distributed (non-IID) metering data settings. Specifically, we introduce meta-learning, where the learning rates are manipulated using the meta-learning idea to maximize the gradient for each client in each global round. Clients with varying processing capacities, data sizes, and batch sizes can participate in global model aggregation and improve their local load forecasting via personalized learning. Simulation results show that our approach outperforms state-of-the-art ML and FL methods in terms of better load forecasting accuracy.
- Abstract(参考訳): スマートグリッドの電力管理と安定性には電力負荷予測が不可欠である。
これは主に、家庭のエネルギー消費を記録するためにスマートメーター(SM)を使用する高度な計測インフラによって達成される。
従来の機械学習(ML)メソッドは、負荷予測によく使用されるが、データプライバシの懸念を引き起こすデータ共有が必要である。
フェデレートラーニング(FL)は、データ交換なしでローカルSMで分散MLモデルを実行することでこの問題に対処できる。
しかし、現在のFLベースのアプローチは、不均質SM間の不均衡なデータ分布による効率的な負荷予測を実現するのに苦労している。
本稿では,非独立かつ同一に分散した(非IID)計測データ設定下での予測をロードする,パーソナライズド・フェデレーションド・ラーニング(PFL)手法を提案する。
具体的には,各グローバルラウンドにおける各クライアントの勾配を最大化するために,メタラーニングのアイデアを用いて学習率を操作するメタラーニングを導入する。
さまざまな処理能力、データサイズ、バッチサイズを持つクライアントは、グローバルモデルアグリゲーションに参加し、パーソナライズされた学習を通じて、ローカルな負荷予測を改善することができる。
シミュレーションの結果,本手法は負荷予測精度の向上の観点から,最先端のML法やFL法よりも優れていることがわかった。
関連論文リスト
- FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
フェデレートラーニング(FL)は、分散データに基づく機械学習モデルの協調トレーニングを可能にする。
クライアント間でのデータはしばしば、クラス不均衡、特徴分散スキュー、サンプルサイズ不均衡、その他の現象によって大きく異なる。
本稿では,バイレベル最適化を用いた新しいベイズPFLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-29T11:28:06Z) - Exploring Lightweight Federated Learning for Distributed Load Forecasting [0.864902991835914]
Federated Learning(FL)は、ディープラーニングを機密データストリームやアプリケーションに対して、プライバシ保護の方法で適用するための分散学習スキームである。
我々は、軽量で完全に接続されたディープニューラルネットワークにより、既存のスキームに匹敵する予測精度を達成することができることを示した。
論文 参考訳(メタデータ) (2024-04-04T09:35:48Z) - Addressing Heterogeneity in Federated Load Forecasting with Personalization Layers [3.933147844455233]
PL-FLと呼ばれる一般的なフレームワークにおいて,負荷予測のためのパーソナライズレイヤを提案する。
PL-FLはFLよりも通信帯域幅が小さいため、FLと純粋に局所訓練に優れることを示す。
論文 参考訳(メタデータ) (2024-04-01T22:53:09Z) - Secure short-term load forecasting for smart grids with
transformer-based federated learning [0.0]
電力負荷予測は、需要と供給収支を補助するスマートグリッドの中で不可欠なタスクである。
きめ細かい負荷プロファイルは、ユーザの消費電力の挙動を公開できるため、プライバシやセキュリティ上の懸念が高まる。
本稿では,短期電力負荷予測のためのフェデレーション学習を用いた変圧器を用いた新しい深層学習手法を提案する。
論文 参考訳(メタデータ) (2023-10-26T15:27:55Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
フェデレートラーニング(FL)は、モバイルエッジネットワークで機械学習モデルを分散的にトレーニングするために使用することができる。
最近のFLは、モデルに依存しないメタラーニング(MAML)フレームワークで解釈されている。
本稿は,MAMLがFLにもたらすメリットと,モバイルエッジネットワーク上でのメリットの最大化について論じる。
論文 参考訳(メタデータ) (2023-03-23T02:42:10Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Federated Stochastic Gradient Descent Begets Self-Induced Momentum [151.4322255230084]
Federated Learning(FL)は、モバイルエッジシステムに適用可能な、新興の機械学習手法である。
このような条件下での勾配降下(SGD)への走行は,大域的な集約プロセスに運動量的な項を加えるとみなすことができる。
論文 参考訳(メタデータ) (2022-02-17T02:01:37Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z) - Continual Local Training for Better Initialization of Federated Models [14.289213162030816]
フェデレートラーニング(Federated Learning、FL)とは、機械学習モデルを分散システムで直接訓練する学習パラダイムである。
一般的なFLアルゴリズムであるemphFederated Averaging (FedAvg)は重みのばらつきに悩まされている。
本稿では,この問題に対処するための局所的な継続的トレーニング戦略を提案する。
論文 参考訳(メタデータ) (2020-05-26T12:27:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。