A Novel Fast Path Planning Approach for Mobile Devices using Hybrid
Quantum Ant Colony Optimization Algorithm
- URL: http://arxiv.org/abs/2310.17808v1
- Date: Wed, 25 Oct 2023 09:23:00 GMT
- Title: A Novel Fast Path Planning Approach for Mobile Devices using Hybrid
Quantum Ant Colony Optimization Algorithm
- Authors: Mayukh Sarkar, Jitesh Pradhan, Anil Kumar Singh, Hathiram Nenavath
- Abstract summary: In emergency services, the devices must traverse in real-time, demanding speedy path planning from a TSP instance.
In this paper, we propose a Hybrid Quantum Ant Colony Optimization algorithm on several TSP instances.
Simulation results show promising results, thus expecting the proposed work to be important in implementing real-time path planning in quantum-enabled mobile devices.
- Score: 2.6558676135898573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With IoT systems' increasing scale and complexity, maintenance of a large
number of nodes using stationary devices is becoming increasingly difficult.
Hence, mobile devices are being employed that can traverse through a set of
target locations and provide the necessary services. In order to reduce energy
consumption and time requirements, the devices are required to traverse
following a Hamiltonian path. This problem can be formulated as a Travelling
Salesman Problem (TSP), an NP-hard problem. Moreover, in emergency services,
the devices must traverse in real-time, demanding speedy path planning from the
TSP instance. Among the well-known optimization techniques for solving the TSP
problem, Ant Colony Optimization has a good stronghold in providing good
approximate solutions. Moreover, ACO not only provides near-optimal solutions
for TSP instances but can also output optimal or near-optimal solutions for
many other demanding hard optimization problems. However, to have a fast
solution, the next node selection, which needs to consider all the neighbors
for each selection, becomes a bottleneck in the path formation step. Moreover,
classical computers are constrained to generate only pseudorandom numbers. Both
these problems can be solved using quantum computing techniques, i.e., the next
node can be selected with proper randomization, respecting the provided set of
probabilities in just a single execution and single measurement of a quantum
circuit. Simulation results of the proposed Hybrid Quantum Ant Colony
Optimization algorithm on several TSP instances have shown promising results,
thus expecting the proposed work to be important in implementing real-time path
planning in quantum-enabled mobile devices.
Related papers
- Quantum evolutionary algorithm for TSP combinatorial optimisation problem [0.0]
This paper implements a new way of solving a problem called the traveling salesman problem (TSP) using quantum genetic algorithm (QGA)
We compared how well this new approach works to the traditional method known as a classical genetic algorithm (CGA)
arXiv Detail & Related papers (2024-09-20T08:27:42Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Assessing Quantum Computing Performance for Energy Optimization in a
Prosumer Community [1.072460284847973]
"Prosumer problem" is the problem of scheduling the household loads on the basis of the user needs, the electricity prices, and the availability of local renewable energy.
Quantum computers can offer a significant breakthrough in treating this problem thanks to the intrinsic parallel nature of quantum operations.
We report on an extensive set of experiments, on simulators and real quantum hardware, for different problem sizes.
arXiv Detail & Related papers (2023-11-17T15:48:51Z) - Quantum-Assisted Solution Paths for the Capacitated Vehicle Routing
Problem [0.0]
We discuss the Capacitated Vehicle Problem (CVRP) or its reduced variant, the Travelling Salesperson Problem (TSP)
Even with today's most powerful classical algorithms, the CVRP is challenging to solve classically.
Quantum computing may offer a way to improve the time to solution.
arXiv Detail & Related papers (2023-04-19T13:03:50Z) - Fermionic Quantum Approximate Optimization Algorithm [11.00442581946026]
We propose fermionic quantum approximate optimization algorithm (FQAOA) for solving optimization problems with constraints.
FQAOA tackle the constrains issue by using fermion particle number preservation to intrinsically impose them throughout QAOA.
We provide a systematic guideline for designing the driver Hamiltonian for a given problem Hamiltonian with constraints.
arXiv Detail & Related papers (2023-01-25T18:36:58Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
We quantify scaling of the expected resource requirements by optimized circuits for hardware architectures with varying levels of connectivity.
We show the number of measurements, and hence total time to synthesizing solution, grows exponentially in problem size and problem graph degree.
These problems may be alleviated by increasing hardware connectivity or by recently proposed modifications to the QAOA that achieve higher performance with fewer circuit layers.
arXiv Detail & Related papers (2022-01-06T21:02:30Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - TIGER: Topology-aware Assignment using Ising machines Application to
Classical Algorithm Tasks and Quantum Circuit Gates [2.4047296366832307]
A mapping problem exists in gate-based quantum computing where the objective is to map tasks to gates in a topology fashion.
Existing task approaches are either or based on physical optimization algorithms, providing different speed and solution quality trade-offs.
We propose an algorithm that allows solving the topology-aware assignment problem using Ising machines.
arXiv Detail & Related papers (2020-09-21T19:46:59Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.