Cavity magnomechanics: from classical to quantum
- URL: http://arxiv.org/abs/2310.19237v3
- Date: Sat, 16 Mar 2024 11:40:32 GMT
- Title: Cavity magnomechanics: from classical to quantum
- Authors: Xuan Zuo, Zhi-Yuan Fan, Hang Qian, Ming-Song Ding, Huatang Tan, Hao Xiong, Jie Li,
- Abstract summary: Hybrid quantum systems based on magnons in magnetic materials have made significant progress in the past decade.
In particular, the interactions among magnons, microwave cavity photons, and vibration phonons form the system of cavity magnomechanics.
Here, we review the experimental and theoretical progress of this emerging field.
- Score: 5.507868004817828
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Hybrid quantum systems based on magnons in magnetic materials have made significant progress in the past decade. They are built based on the couplings of magnons with microwave photons, optical photons, vibration phonons, and superconducting qubits. In particular, the interactions among magnons, microwave cavity photons, and vibration phonons form the system of cavity magnomechanics (CMM), which lies in the interdisciplinary field of cavity QED, magnonics, quantum optics, and quantum information. Here, we review the experimental and theoretical progress of this emerging field. We first introduce the underlying theories of the magnomechanical coupling, and then some representative classical phenomena that have been experimentally observed, including magnomechanically induced transparency, magnomechanical dynamical backaction, magnon-phonon cross-Kerr nonlinearity, etc. We also discuss a number of theoretical proposals, which show the potential of the CMM system for preparing different kinds of quantum states of magnons, phonons, and photons, and hybrid systems combining magnomechanics and optomechanics and relevant quantum protocols based on them. Finally, we summarize this review and provide an outlook for the future research directions in this field.
Related papers
- Magnon-Skyrmion Hybrid Quantum Systems: Tailoring Interactions via Magnons [0.22436328017044366]
We propose and analyze a magnon-skyrmion hybrid quantum system, consisting of a micromagnet and nearby magnetic skyrmions.
We show that with this hybrid setup it is possible to induce magnon-mediated nonreciprocal interactions and responses between distant skyrmion qubits or between skyrmion qubits and other quantum systems like superconducting qubits.
arXiv Detail & Related papers (2024-04-15T00:19:23Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Quantum network with magnonic and mechanical nodes [7.298195012362328]
A quantum network consisting of magnonic and mechanical nodes connected by light is proposed.
We show that by coupling the magnonic system to a mechanical system using optical pulses, an arbitrary magnonic state can be transferred to and stored in a distant long-lived mechanical resonator.
arXiv Detail & Related papers (2021-08-25T10:18:05Z) - Quantum engineering with hybrid magnonics systems and materials [0.04547972388037025]
This review focuses on the current frontiers with respect to utilizing magnetic excitatons or magnons for novel quantum functionality.
We start our discussion with circuit-based hybrid magnonic systems, which are coupled with microwave photons and acoustic phonons.
Next we highlight new opportunities for understanding the interactions between magnons and nitrogen-vacancy centers for quantum sensing and implementing quantum interconnects.
arXiv Detail & Related papers (2021-02-05T15:12:56Z) - Nonreciprocal Transmission and Entanglement in a cavity-magnomechanical
system [10.520692160489133]
Quantum entanglement is generated with a cavity-magnomechanical system.
By breaking symmetry of the configuration, we realize nonreciprocal photon transmission and one-way bipartite quantum entanglement.
arXiv Detail & Related papers (2021-01-25T07:41:40Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Circuit Quantum Electrodynamics [62.997667081978825]
Quantum mechanical effects at the macroscopic level were first explored in Josephson junction-based superconducting circuits in the 1980s.
In the last twenty years, the emergence of quantum information science has intensified research toward using these circuits as qubits in quantum information processors.
The field of circuit quantum electrodynamics (QED) has now become an independent and thriving field of research in its own right.
arXiv Detail & Related papers (2020-05-26T12:47:38Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Theoretical methods for ultrastrong light-matter interactions [91.3755431537592]
This article reviews theoretical methods developed to understand cavity quantum electrodynamics in the ultrastrong-coupling regime.
The article gives a broad overview of the recent progress, ranging from analytical estimate of ground-state properties to proper computation of master equations.
Most of the article is devoted to effective models, relevant for the various experimental platforms in which the ultrastrong coupling has been reached.
arXiv Detail & Related papers (2020-01-23T18:09:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.