Geometric phase and wave-particle duality of the photon
- URL: http://arxiv.org/abs/2310.20273v1
- Date: Tue, 31 Oct 2023 08:40:24 GMT
- Title: Geometric phase and wave-particle duality of the photon
- Authors: Elvis Pillinen, Atri Halder, Ari T. Friberg, Tero Set\"al\"a, and
Andreas Norrman
- Abstract summary: We study the geometric phase of a photon in double-slit interference.
The relation can be seen as quantifying wave-particle duality of the photon via the geometric phase.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The concepts of geometric phase and wave-particle duality are interlinked to
several fundamental phenomena in quantum physics, but their mutual relationship
still forms an uncharted open problem. Here we address this question by
studying the geometric phase of a photon in double-slit interference. We
especially discover a general complementarity relation for the photon that
connects the geometric phase it exhibits in the observation plane and the
which-path information it encases at the two slits. The relation can be seen as
quantifying wave-particle duality of the photon via the geometric phase, thus
corroborating a foundational link between two ubiquitous notions in quantum
physics research.
Related papers
- Geometric Antibunching and Directional Shaping of Photon Anticorrelations [44.99833362998488]
We find a new mechanism for photon anticorrelation, termed as geometric antibunching.
This phenomenon is completely agnostic to the quantum state of the emitters.
arXiv Detail & Related papers (2024-10-23T14:29:15Z) - Quantum correlations of the photon fields in a waveguide quantum electrodynamics [0.0]
We calculate the first order and second order photon correlation functions for the scattering of a single-photon pulse on a two-level atom.
Within Markov approximation we find the analytic expression for the quantum operator of positive frequency electric field.
arXiv Detail & Related papers (2024-10-23T09:36:19Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - On the geometric phases in entangled states [0.0]
Correlation relations for the spin measurements on a pair of entangled particles are investigated.
In some cases the geometric phase information is carried over to the final bipartite entangled state.
arXiv Detail & Related papers (2022-08-30T06:56:27Z) - Pointillisme \`a la Signac and Construction of a Pseudo Quantum Phase
Space [0.0]
We construct a quantum-mechanical substitute for the symplectic phase space.
The total space of this fiber bundle consists of geometric quantum states.
We show that the set of equivalence classes of unitarily related geometric quantum states is in a one-to-one correspondence with the set of all Gaussian wavepackets.
arXiv Detail & Related papers (2022-07-31T16:43:06Z) - Geometric phase in a dissipative Jaynes-Cummings model: theoretical
explanation for resonance robustness [68.8204255655161]
We compute the geometric phases acquired in both unitary and dissipative Jaynes-Cummings models.
In the dissipative model, the non-unitary effects arise from the outflow of photons through the cavity walls.
We show the geometric phase is robust, exhibiting a vanishing correction under a non-unitary evolution.
arXiv Detail & Related papers (2021-10-27T15:27:54Z) - A wave nature-based interpretation of the nonclassical feature of photon
bunching on a beam splitter [0.0]
The quantum feature of photon bunching on a beam splitter between two output photons can be explained by Born rule.
We present a new interpretation based on the wave nature of a photon, where the quantum feature of photon bunching is explained through phase basis superposition of the beam splitter.
arXiv Detail & Related papers (2021-10-12T15:47:21Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Quantum-Clustered Two-Photon Walks [68.8204255655161]
We demonstrate a previously unknown two-photon effect in a discrete-time quantum walk.
Two identical bosons with no mutual interactions can remain clustered together.
The two photons move in the same direction at each step due to a two-photon quantum interference phenomenon.
arXiv Detail & Related papers (2020-03-12T17:02:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.