論文の概要: One-shot backpropagation for multi-step prediction in physics-based
system identification
- arxiv url: http://arxiv.org/abs/2310.20567v1
- Date: Tue, 31 Oct 2023 15:56:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-01 14:14:49.058599
- Title: One-shot backpropagation for multi-step prediction in physics-based
system identification
- Title(参考訳): 物理系同定における多段階予測のためのワンショットバックプロパゲーション
- Authors: Cesare Donati, Martina Mammarella, Fabrizio Dabbene, Carlo Novara,
Constantino Lagoa
- Abstract要約: バックプロパゲーションに基づく多段階損失関数の勾配解析アルゴリズムを提案する。
ケーススタディとして,宇宙デブリの慣性行列を推定するために提案手法を検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The aim of this paper is to present a novel general framework for the
identification of possibly interconnected systems, while preserving their
physical properties and providing accuracy in multi-step prediction. An
analytical and recursive algorithm for the gradient computation of the
multi-step loss function based on backpropagation is introduced, providing
physical and structural insight directly into the learning algorithm. As a case
study, the proposed approach is tested for estimating the inertia matrix of a
space debris starting from state observations.
- Abstract(参考訳): 本稿では,それらの物理的性質を保ちつつ,多段階予測の精度を保ちながら,相互接続可能なシステム同定のための新しい汎用フレームワークを提案する。
バックプロパゲーションに基づく多段階損失関数の勾配計算のための解析的および再帰的アルゴリズムを導入し、学習アルゴリズムに直接物理的および構造的洞察を与える。
事例研究として,宇宙デブリの慣性行列を状態観測から求め,その慣性行列を推定する手法を検証した。
関連論文リスト
- Fast and Reliable Probabilistic Reflectometry Inversion with Prior-Amortized Neural Posterior Estimation [73.81105275628751]
リフレクションメトリデータと互換性のある全ての構造を見つけることは、標準アルゴリズムでは計算が禁止される。
この信頼性の欠如に対処するため,確率論的深層学習法を用いて,現実的な構造を数秒で識別する。
提案手法は,シミュレーションに基づく推論と新しい適応型事前推定を併用する。
論文 参考訳(メタデータ) (2024-07-26T10:29:16Z) - Neural Incremental Data Assimilation [8.817223931520381]
ニューラルネットワークによってパラメータ化された粗いガウス分布の列として物理系をモデル化する深層学習手法を提案する。
これにより、再構築エラーを最小限に抑えるためにエンドツーエンドで訓練された同化演算子を定義することができる。
本稿では,疎度観測によるカオス力学系へのアプローチについて述べるとともに,従来の変分データ同化法と比較する。
論文 参考訳(メタデータ) (2024-06-21T11:42:55Z) - An evaluation framework for dimensionality reduction through sectional
curvature [59.40521061783166]
本研究は,非教師付き次元減少性能指標を初めて導入することを目的としている。
その実現可能性をテストするために、この測定基準は最もよく使われる次元削減アルゴリズムの性能を評価するために用いられている。
新しいパラメータ化問題インスタンスジェネレータが関数ジェネレータの形式で構築されている。
論文 参考訳(メタデータ) (2023-03-17T11:59:33Z) - A Causality-Based Learning Approach for Discovering the Underlying
Dynamics of Complex Systems from Partial Observations with Stochastic
Parameterization [1.2882319878552302]
本稿では,部分的な観測を伴う複雑な乱流系の反復学習アルゴリズムを提案する。
モデル構造を識別し、観測されていない変数を復元し、パラメータを推定する。
数値実験により、新しいアルゴリズムはモデル構造を同定し、多くの複雑な非線形系に対して適切なパラメータ化を提供することに成功した。
論文 参考訳(メタデータ) (2022-08-19T00:35:03Z) - Assembly Planning from Observations under Physical Constraints [65.83676649042623]
提案アルゴリズムは, 物理安定性制約, 凸最適化, モンテカルロ木探索の簡単な組み合わせを用いて, 集合を計画する。
それは効率的で、最も重要なことは、オブジェクト検出のエラーに対して堅牢であり、実際のロボットシステムでは避けられないポーズ推定である。
論文 参考訳(メタデータ) (2022-04-20T16:51:07Z) - Gradient-Based Learning of Discrete Structured Measurement Operators for
Signal Recovery [16.740247586153085]
本稿では、勾配に基づく学習を利用して離散最適化問題を解く方法について述べる。
GLODISMO (Gradient-based Learning of DIscrete Structured Measurement Operators) によるアプローチの定式化
いくつかの信号回復アプリケーションにおいて,GLODISMOの性能と柔軟性を実証的に示す。
論文 参考訳(メタデータ) (2022-02-07T18:27:08Z) - Discovering Latent Causal Variables via Mechanism Sparsity: A New
Principle for Nonlinear ICA [81.4991350761909]
ICA(Independent component analysis)は、この目的を定式化し、実用的な応用のための推定手順を提供する手法の集合を指す。
潜伏変数は、潜伏機構をスパースに正則化すれば、置換まで復元可能であることを示す。
論文 参考訳(メタデータ) (2021-07-21T14:22:14Z) - Gradient Starvation: A Learning Proclivity in Neural Networks [97.02382916372594]
グラディエント・スターベーションは、タスクに関連する機能のサブセットのみをキャプチャすることで、クロスエントロピー損失を最小化するときに発生する。
この研究は、ニューラルネットワークにおけるそのような特徴不均衡の出現に関する理論的説明を提供する。
論文 参考訳(メタデータ) (2020-11-18T18:52:08Z) - Accurately Solving Physical Systems with Graph Learning [22.100386288615006]
本稿では,グラフネットワークを持つ物理系に対する反復解法を高速化する新しい手法を提案する。
エンド・ツー・エンドで物理システムを学習することを目的とした既存の手法とは異なり、我々のアプローチは長期的な安定性を保証する。
本手法は,従来の反復解法の性能を向上させる。
論文 参考訳(メタデータ) (2020-06-06T15:48:34Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
本研究では、限られた数の人間の実演からそのような動きを学ぶためのアプローチを提案する。
複素運動は安定な力学系のロールアウトとして符号化される。
このアプローチの有効性は、確立されたベンチマーク上での検証と、現実世界のロボットシステム上で収集されたデモによって実証される。
論文 参考訳(メタデータ) (2020-05-27T03:51:57Z) - Identifying Mechanical Models through Differentiable Simulations [16.86640234046472]
本稿では,未知の物体を非包括的動作によって操作する新しい手法を提案する。
提案手法は、微分可能な物理モデルの最近の進歩を利用して、操作対象の未知の力学的性質を同定する。
論文 参考訳(メタデータ) (2020-05-11T20:19:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。