Histopathological Image Analysis with Style-Augmented Feature Domain
Mixing for Improved Generalization
- URL: http://arxiv.org/abs/2310.20638v1
- Date: Tue, 31 Oct 2023 17:06:36 GMT
- Title: Histopathological Image Analysis with Style-Augmented Feature Domain
Mixing for Improved Generalization
- Authors: Vaibhav Khamankar, Sutanu Bera, Saumik Bhattacharya, Debashis Sen, and
Prabir Kumar Biswas
- Abstract summary: Domain generalization aims to address limitations by enabling the learning models to generalize to new datasets or populations.
Style transfer-based data augmentation is an emerging technique that can be used to improve the generalizability of machine learning models.
We propose a feature domain style mixing technique that uses adaptive instance normalization to generate style-augmented versions of images.
- Score: 14.797708873795406
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Histopathological images are essential for medical diagnosis and treatment
planning, but interpreting them accurately using machine learning can be
challenging due to variations in tissue preparation, staining and imaging
protocols. Domain generalization aims to address such limitations by enabling
the learning models to generalize to new datasets or populations. Style
transfer-based data augmentation is an emerging technique that can be used to
improve the generalizability of machine learning models for histopathological
images. However, existing style transfer-based methods can be computationally
expensive, and they rely on artistic styles, which can negatively impact model
accuracy. In this study, we propose a feature domain style mixing technique
that uses adaptive instance normalization to generate style-augmented versions
of images. We compare our proposed method with existing style transfer-based
data augmentation methods and found that it performs similarly or better,
despite requiring less computation and time. Our results demonstrate the
potential of feature domain statistics mixing in the generalization of learning
models for histopathological image analysis.
Related papers
- Self-supervised Vision Transformer are Scalable Generative Models for Domain Generalization [0.13108652488669734]
We propose a novel generative method for domain generalization in histopathology images.
Our method employs a generative, self-supervised Vision Transformer to dynamically extract characteristics of image patches.
Experiments conducted on two distinct histopathology datasets demonstrate the effectiveness of our proposed approach.
arXiv Detail & Related papers (2024-07-03T08:20:27Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
The training of an efficacious deep learning model requires large data with diverse styles and qualities.
A novel contrastive learning is developed to equip the deep learning models with better style generalization capability.
The proposed method has been evaluated extensively and rigorously with mammograms from various vendor style domains and several public datasets.
arXiv Detail & Related papers (2023-04-20T11:40:21Z) - CellMix: A General Instance Relationship based Method for Data
Augmentation Towards Pathology Image Classification [6.9596321268519326]
In pathology image analysis, obtaining and maintaining high-quality annotated samples is an extremely labor-intensive task.
We propose the CellMix framework, which employs a novel distribution-oriented in-place shuffle approach.
Our experiments in pathology image classification tasks demonstrate state-of-the-art (SOTA) performance on 7 distinct datasets.
arXiv Detail & Related papers (2023-01-27T03:17:35Z) - From Modern CNNs to Vision Transformers: Assessing the Performance,
Robustness, and Classification Strategies of Deep Learning Models in
Histopathology [1.8947504307591034]
We develop a new methodology to extensively evaluate a wide range of classification models.
We thoroughly tested the models on five widely used histopathology datasets.
We extend existing interpretability methods and systematically reveal insights of the models' classifications strategies.
arXiv Detail & Related papers (2022-04-11T12:26:19Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
Medical ultrasound imaging relies heavily on high-quality signal processing to provide reliable and interpretable image reconstructions.
Deep learning based methods, which are optimized in a data-driven fashion, have gained popularity.
A relatively new paradigm combines the power of the two: leveraging data-driven deep learning, as well as exploiting domain knowledge.
arXiv Detail & Related papers (2022-04-09T13:04:36Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Learning domain-agnostic visual representation for computational
pathology using medically-irrelevant style transfer augmentation [4.538771844947821]
STRAP (Style TRansfer Augmentation for histoPathology) is a form of data augmentation based on random style transfer from artistic paintings.
Style transfer replaces the low-level texture content of images with the uninformative style of randomly selected artistic paintings.
We demonstrate that STRAP leads to state-of-the-art performance, particularly in the presence of domain shifts.
arXiv Detail & Related papers (2021-02-02T18:50:16Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Medical Image Harmonization Using Deep Learning Based Canonical Mapping:
Toward Robust and Generalizable Learning in Imaging [4.396671464565882]
We propose a new paradigm in which data from a diverse range of acquisition conditions are "harmonized" to a common reference domain.
We test this approach on two example problems, namely MRI-based brain age prediction and classification of schizophrenia.
arXiv Detail & Related papers (2020-10-11T22:01:37Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.