論文の概要: Crosslingual Retrieval Augmented In-context Learning for Bangla
- arxiv url: http://arxiv.org/abs/2311.00587v2
- Date: Sat, 2 Dec 2023 16:54:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 21:37:02.323212
- Title: Crosslingual Retrieval Augmented In-context Learning for Bangla
- Title(参考訳): 言語横断検索によるバングラ語文脈学習
- Authors: Xiaoqian Li, Ercong Nie, Sheng Liang
- Abstract要約: 本稿では,テキスト内学習を付加した言語間検索を利用した先駆的手法を提案する。
本研究では,多言語事前学習型言語モデル(MPLM)を用いて,Banglaタスクの性能向上を実現した。
本評価では, 言語間検索の高速化により, ゼロショット性能に対してMPLMを安定的に改善できることを示す。
- 参考スコア(独自算出の注目度): 8.065775937617417
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The promise of Large Language Models (LLMs) in Natural Language Processing
has often been overshadowed by their limited performance in low-resource
languages such as Bangla. To address this, our paper presents a pioneering
approach that utilizes cross-lingual retrieval augmented in-context learning.
By strategically sourcing semantically similar prompts from high-resource
language, we enable multilingual pretrained language models (MPLMs), especially
the generative model BLOOMZ, to successfully boost performance on Bangla tasks.
Our extensive evaluation highlights that the cross-lingual retrieval augmented
prompts bring steady improvements to MPLMs over the zero-shot performance.
- Abstract(参考訳): 自然言語処理におけるLLM(Large Language Models)の約束は、Banglaのような低リソース言語での限られたパフォーマンスによって、しばしば隠蔽されている。
そこで本稿では,言語間検索による文脈内学習を利用した先駆的手法を提案する。
本研究では,多言語事前学習型言語モデル(MPLM),特に生成モデルBLOOMZを戦略的に高リソース言語から意味論的に類似したプロンプトを抽出することにより,Banglaタスクの性能向上を実現している。
広範に評価した結果,言語間検索はゼロショット性能よりもMPLMを安定的に向上させることがわかった。
関連論文リスト
- Multilingual Prompts in LLM-Based Recommenders: Performance Across Languages [0.0]
この研究は、非英語のプロンプトがレコメンデーションパフォーマンスに与える影響を探求する。
ML1M、LastFM、Amazon-Beautyの3つの実世界のデータセットの評価は、非英語プロンプトの使用が一般的にパフォーマンスを低下させることを示した。
多言語プロンプトによるリトレーニングにより、言語間のバランスの取れたパフォーマンスが向上したが、英語のパフォーマンスはわずかに低下した。
論文 参考訳(メタデータ) (2024-09-11T20:31:42Z) - MoE-CT: A Novel Approach For Large Language Models Training With Resistance To Catastrophic Forgetting [53.77590764277568]
ベースモデルの学習を多言語拡張プロセスから分離する新しいMoE-CTアーキテクチャを提案する。
我々の設計では、元のLLMパラメータを凍結し、高リソース言語のパフォーマンスを保護しますが、様々な言語データセットに基づいてトレーニングされたMoEモジュールは、低リソース言語の習熟度を向上します。
論文 参考訳(メタデータ) (2024-06-25T11:03:45Z) - Enhancing Multilingual Capabilities of Large Language Models through
Self-Distillation from Resource-Rich Languages [60.162717568496355]
大規模言語モデル(LLM)は多言語コーパスで事前訓練されている。
彼らのパフォーマンスは、いくつかのリソース豊富な言語と比較して、ほとんどの言語でまだ遅れています。
論文 参考訳(メタデータ) (2024-02-19T15:07:32Z) - From Classification to Generation: Insights into Crosslingual Retrieval
Augmented ICL [8.065775937617417]
クロスランガル検索強化インコンテキスト学習(CREA-ICL)を利用した新しい手法を提案する。
高ソース言語から意味論的に類似したプロンプトを抽出することにより、多言語事前学習言語モデル(MPLM)のゼロショット性能の向上を目指す。
我々の手法は分類タスクを着実に改善するが、生成タスクでは課題に直面している。
論文 参考訳(メタデータ) (2023-11-11T15:40:21Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Soft Language Clustering for Multilingual Model Pre-training [57.18058739931463]
本稿では,インスタンスを条件付きで符号化するためのフレキシブルガイダンスとして,コンテキスト的にプロンプトを検索するXLM-Pを提案する。
我々のXLM-Pは、(1)言語間における言語不変および言語固有知識の軽量なモデリングを可能にし、(2)他の多言語事前学習手法との容易な統合を可能にする。
論文 参考訳(メタデータ) (2023-06-13T08:08:08Z) - Generalizing Multimodal Pre-training into Multilingual via Language
Acquisition [54.69707237195554]
英語のVision-Language Pre-Trainingは、様々な下流タスクで大きな成功を収めた。
この成功を英語以外の言語に一般化するために、Multilingual Vision-Language Pre-Trainingを通じていくつかの取り組みがなされている。
単言語視覚言語事前学習モデルを多言語に容易に一般化できるtextbfMultitextbfLingual textbfAcquisition (MLA) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-29T08:53:22Z) - Adaptive Activation Network For Low Resource Multilingual Speech
Recognition [30.460501537763736]
ASRモデルの上位層に適応的アクティベーションネットワークを導入する。
また,(1)クロス言語学習,(2)アクティベーション関数をソース言語からターゲット言語に置き換える,(2)多言語学習という2つの手法を提案する。
IARPA Babelデータセットに関する実験により、我々のアプローチは、オフスクラッチトレーニングや従来のボトルネック機能に基づく手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2022-05-28T04:02:59Z) - Zero-Shot Dependency Parsing with Worst-Case Aware Automated Curriculum
Learning [5.865807597752895]
我々は、自動カリキュラム学習に依存するマルチタスク学習の手法を採用し、外来言語の性能解析を動的に最適化する。
この手法はゼロショット設定における一様・一様サンプリングよりもはるかに優れていることを示す。
論文 参考訳(メタデータ) (2022-03-16T11:33:20Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。