論文の概要: NeuroWrite: Predictive Handwritten Digit Classification using Deep
Neural Networks
- arxiv url: http://arxiv.org/abs/2311.01022v1
- Date: Thu, 2 Nov 2023 06:29:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 14:25:02.426585
- Title: NeuroWrite: Predictive Handwritten Digit Classification using Deep
Neural Networks
- Title(参考訳): NeuroWrite: ディープニューラルネットワークを用いた予測手書きディジット分類
- Authors: Kottakota Asish, P. Sarath Teja, R. Kishan Chander, Dr. D. Deva Hema
- Abstract要約: 我々は,深層ニューラルネットワークを用いて手書き桁の分類を予測するユニークな方法であるNeuroWriteを紹介する。
本モデルは手書き文字の識別と分類において優れた精度を示す。
NeuroWriteは、ディープニューラルネットワークベースの手書き桁認識のためのバーを上げるための有望な方法である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid evolution of deep neural networks has revolutionized the field of
machine learning, enabling remarkable advancements in various domains. In this
article, we introduce NeuroWrite, a unique method for predicting the
categorization of handwritten digits using deep neural networks. Our model
exhibits outstanding accuracy in identifying and categorising handwritten
digits by utilising the strength of convolutional neural networks (CNNs) and
recurrent neural networks (RNNs).In this article, we give a thorough
examination of the data preparation methods, network design, and training
methods used in NeuroWrite. By implementing state-of-the-art techniques, we
showcase how NeuroWrite can achieve high classification accuracy and robust
generalization on handwritten digit datasets, such as MNIST. Furthermore, we
explore the model's potential for real-world applications, including digit
recognition in digitized documents, signature verification, and automated
postal code recognition. NeuroWrite is a useful tool for computer vision and
pattern recognition because of its performance and adaptability.The
architecture, training procedure, and evaluation metrics of NeuroWrite are
covered in detail in this study, illustrating how it can improve a number of
applications that call for handwritten digit classification. The outcomes show
that NeuroWrite is a promising method for raising the bar for deep neural
network-based handwritten digit recognition.
- Abstract(参考訳): ディープニューラルネットワークの急速な進化は、機械学習の分野に革命をもたらし、様々な領域で顕著な進歩を可能にした。
本稿では,深層ニューラルネットワークを用いて手書き桁の分類を予測するユニークな方法であるNeuroWriteを紹介する。
本モデルは,畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)の強度を利用した手書き桁の同定と分類において,優れた精度を示す。
本稿では、NeuroWriteで使用されるデータ作成方法、ネットワーク設計、およびトレーニング方法について、徹底的に検討する。
最先端の技術を導入することで,neurowriteがmnistなどの手書き文字データセットにおいて,高い分類精度と堅牢な一般化を実現する方法を示す。
さらに,デジタル化された文書の数値認識,署名検証,自動郵便コード認識など,実世界の応用の可能性についても検討する。
NeuroWriteは、その性能と適応性から、コンピュータビジョンとパターン認識に有用なツールであり、この研究でNeuroWriteのアーキテクチャ、トレーニング手順、評価指標を詳細に取り上げ、手書き桁分類と呼ばれる多くのアプリケーションを改善する方法について説明している。
その結果、ニューロライトはディープニューラルネットワークに基づく手書き文字認識のバーを上げる有望な方法であることが示された。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Deep Learning for real-time neural decoding of grasp [0.0]
本稿では,ニューラルネットワークの復号化のためのDeep Learningに基づく手法を提案する。
提案手法の主な目的は、これまでの神経科学知識に頼ることなく、最先端の復号精度を改善することである。
論文 参考訳(メタデータ) (2023-11-02T08:26:29Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AIは、シンボリックテクニックの解釈可能性と、生データから学ぶ深層学習の能力を組み合わせることを目的としている。
本稿では,ニューラルネットワークを用いて生データから潜在概念を抽出するNSIL(Neuro-Symbolic Inductive Learner)を提案する。
NSILは表現力のある知識を学習し、計算的に複雑な問題を解き、精度とデータ効率の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-25T12:41:59Z) - Neural Architecture Search for Dense Prediction Tasks in Computer Vision [74.9839082859151]
ディープラーニングは、ニューラルネットワークアーキテクチャエンジニアリングに対する需要の高まりにつながっている。
ニューラルネットワーク検索(NAS)は、手動ではなく、データ駆動方式でニューラルネットワークアーキテクチャを自動設計することを目的としている。
NASはコンピュータビジョンの幅広い問題に適用されている。
論文 参考訳(メタデータ) (2022-02-15T08:06:50Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - An SMT-Based Approach for Verifying Binarized Neural Networks [1.4394939014120451]
本稿では,SMTを用いた二元化ニューラルネットワークの検証手法を提案する。
我々の手法の1つの新しい点は、二項化コンポーネントと非二項化コンポーネントの両方を含むニューラルネットワークの検証を可能にすることである。
我々は、この手法をマラブーフレームワークの拡張として実装し、一般的な二項化ニューラルネットワークアーキテクチャのアプローチを評価する。
論文 参考訳(メタデータ) (2020-11-05T16:21:26Z) - Directed hypergraph neural network [0.0]
本稿では,指向性ハイパーグラフのための新しいニューラルネットワーク手法を提案する。
実験で使用される2つのデータセットは、coraとciteseerデータセットである。
論文 参考訳(メタデータ) (2020-08-09T01:39:52Z) - Deep learning approaches for neural decoding: from CNNs to LSTMs and
spikes to fMRI [2.0178765779788495]
神経信号から直接の行動、知覚、認知状態の復号化は、脳-コンピュータインタフェースの研究に応用されている。
過去10年間で、ディープラーニングは多くの機械学習タスクにおいて最先端の手法になっている。
ディープラーニングは、幅広いタスクにわたるニューラルデコーディングの正確性と柔軟性を改善するための有用なツールであることが示されている。
論文 参考訳(メタデータ) (2020-05-19T18:10:35Z) - On Tractable Representations of Binary Neural Networks [23.50970665150779]
我々は、二項ニューラルネットワークの決定関数を、順序付き二項決定図(OBDD)や意味決定図(SDD)などの抽出可能な表現にコンパイルすることを検討する。
実験では,SDDとしてニューラルネットワークのコンパクトな表現を得ることが可能であることを示す。
論文 参考訳(メタデータ) (2020-04-05T03:21:26Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。