Spectral Clustering of Attributed Multi-relational Graphs
- URL: http://arxiv.org/abs/2311.01840v1
- Date: Fri, 3 Nov 2023 11:05:29 GMT
- Title: Spectral Clustering of Attributed Multi-relational Graphs
- Authors: Ylli Sadikaj, Yllka Velaj, Sahar Behzadi, Claudia Plant
- Abstract summary: Graph clustering aims at discovering a natural grouping of the nodes such as similar nodes are assigned to a common cluster.
We propose SpectralMix, a joint dimensionality reduction technique for multi-relational graphs with categorical node attributes.
- Score: 11.486261673963392
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph clustering aims at discovering a natural grouping of the nodes such
that similar nodes are assigned to a common cluster. Many different algorithms
have been proposed in the literature: for simple graphs, for graphs with
attributes associated to nodes, and for graphs where edges represent different
types of relations among nodes. However, complex data in many domains can be
represented as both attributed and multi-relational networks.
In this paper, we propose SpectralMix, a joint dimensionality reduction
technique for multi-relational graphs with categorical node attributes.
SpectralMix integrates all information available from the attributes, the
different types of relations, and the graph structure to enable a sound
interpretation of the clustering results. Moreover, it generalizes existing
techniques: it reduces to spectral embedding and clustering when only applied
to a single graph and to homogeneity analysis when applied to categorical data.
Experiments conducted on several real-world datasets enable us to detect
dependencies between graph structure and categorical attributes, moreover, they
exhibit the superiority of SpectralMix over existing methods.
Related papers
- Multiscale Graph Construction Using Non-local Cluster Features [10.922757310575307]
We consider graph and node-wise features simultaneously for multiscale clustering of a graph.
In experiments on multiscale image and point cloud segmentation, we demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-11-13T06:42:03Z) - Histopathology Whole Slide Image Analysis with Heterogeneous Graph
Representation Learning [78.49090351193269]
We propose a novel graph-based framework to leverage the inter-relationships among different types of nuclei for WSI analysis.
Specifically, we formulate the WSI as a heterogeneous graph with "nucleus-type" attribute to each node and a semantic attribute similarity to each edge.
Our framework outperforms the state-of-the-art methods with considerable margins on various tasks.
arXiv Detail & Related papers (2023-07-09T14:43:40Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
This paper proposes a novel Structure-Aware Heterogeneous Graph Neural Network (SHGNN) to address the above limitations.
We first utilize a feature propagation module to capture the local structure information of intermediate nodes in the meta-path.
Next, we use a tree-attention aggregator to incorporate the graph structure information into the aggregation module on the meta-path.
Finally, we leverage a meta-path aggregator to fuse the information aggregated from different meta-paths.
arXiv Detail & Related papers (2021-12-12T14:18:18Z) - Semi-Supervised Deep Learning for Multiplex Networks [20.671777884219555]
Multiplex networks are complex graph structures in which a set of entities are connected to each other via multiple types of relations.
We present a novel semi-supervised approach for structure-aware representation learning on multiplex networks.
arXiv Detail & Related papers (2021-10-05T13:37:43Z) - HMSG: Heterogeneous Graph Neural Network based on Metapath Subgraph
Learning [2.096172374930129]
We propose a new heterogeneous graph neural network model named HMSG.
We decompose the heterogeneous graph into multiple subgraphs.
Each subgraph associates specific semantic and structural information.
Through a type-specific attribute transformation, node attributes can also be transferred among different types of nodes.
arXiv Detail & Related papers (2021-09-07T05:02:59Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Clustering multilayer graphs with missing nodes [4.007017852999008]
Clustering is a fundamental problem in network analysis where the goal is to regroup nodes with similar connectivity profiles.
We propose a new framework that allows for layers to be defined on different sets of nodes.
arXiv Detail & Related papers (2021-03-04T18:56:59Z) - Learning Multi-layer Graphs and a Common Representation for Clustering [13.90938823562779]
We focus on graph learning from multi-view data of shared entities for spectral clustering.
We propose an efficient solver based on alternating minimization to solve the problem.
Numerical experiments on synthetic and real datasets demonstrate that the proposed algorithm outperforms state-of-the-art multi-view clustering techniques.
arXiv Detail & Related papers (2020-10-23T11:12:43Z) - Graph Neural Networks with Composite Kernels [60.81504431653264]
We re-interpret node aggregation from the perspective of kernel weighting.
We present a framework to consider feature similarity in an aggregation scheme.
We propose feature aggregation as the composition of the original neighbor-based kernel and a learnable kernel to encode feature similarities in a feature space.
arXiv Detail & Related papers (2020-05-16T04:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.