論文の概要: Enhancing Functional Data Analysis with Sequential Neural Networks:
Advantages and Comparative Study
- arxiv url: http://arxiv.org/abs/2311.01875v1
- Date: Fri, 3 Nov 2023 12:33:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-06 14:24:25.371148
- Title: Enhancing Functional Data Analysis with Sequential Neural Networks:
Advantages and Comparative Study
- Title(参考訳): 逐次ニューラルネットワークによる機能的データ解析の強化 : アドバンテージと比較研究
- Authors: J. Zhao, J. Li, M. Chen and S. Jadhav
- Abstract要約: シーケンスニューラルネットワーク(Sequential Neural Networks, SNN)は、シーケンスデータを処理できる特殊なニューラルネットワークである。
FDAベースの方法論は、特に現場外の実践者にとって、課題を提示している。
FDA応用におけるSNNの利用を提案し,その効果を比較分析により実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Functional Data Analysis (FDA) is a statistical domain developed to handle
functional data characterized by high dimensionality and complex data
structures. Sequential Neural Networks (SNNs) are specialized neural networks
capable of processing sequence data, a fundamental aspect of functional data.
Despite their great flexibility in modeling functional data, SNNs have been
inadequately employed in the FDA community. One notable advantage of SNNs is
the ease of implementation, making them accessible to a broad audience beyond
academia. Conversely, FDA-based methodologies present challenges, particularly
for practitioners outside the field, due to their intricate complexity. In
light of this, we propose utilizing SNNs in FDA applications and demonstrate
their effectiveness through comparative analyses against popular FDA regression
models based on numerical experiments and real-world data analysis. SNN
architectures allow us to surpass the limitations of traditional FDA methods,
offering scalability, flexibility, and improved analytical performance. Our
findings highlight the potential of SNN-based methodologies as powerful tools
for data applications involving functional data.
- Abstract(参考訳): 関数データ分析 (FDA) は、高次元と複雑なデータ構造を特徴とする関数データを扱うために開発された統計分野である。
シーケンシャルニューラルネットワーク(snn)は、機能データの基本的な側面であるシーケンスデータを処理できる特殊なニューラルネットワークである。
機能データのモデリングに非常に柔軟性があるにもかかわらず、SNNはFDAコミュニティでは不十分に採用されている。
snnの特筆すべきアドバンテージは実装の容易さであり、アカデミアを超えて幅広いオーディエンスに利用可能である。
逆に、FDAベースの方法論は、特に現場外の実践者にとって、複雑な複雑さのために課題を提示している。
そこで我々は,SNNをFDAの応用に適用し,数値実験と実世界のデータ分析に基づく一般的なFDA回帰モデルとの比較分析により,その効果を実証する。
SNNアーキテクチャは、従来のFDAメソッドの制限を超え、スケーラビリティ、柔軟性、分析性能の改善を提供します。
本研究は,機能的データを含むデータアプリケーションのための強力なツールとして,SNNベースの方法論の可能性を強調した。
関連論文リスト
- Enhancing SNN-based Spatio-Temporal Learning: A Benchmark Dataset and Cross-Modality Attention Model [30.66645039322337]
高品質なベンチマークデータセットは、ニューラルネットワーク(SNN)の発展に非常に重要である
しかし、SNNベースのクロスモーダル融合はまだ未定である。
本研究では,SNNの時間的特性をよりよく活用できるニューロモルフィックデータセットを提案する。
論文 参考訳(メタデータ) (2024-10-21T06:59:04Z) - Direct Training High-Performance Deep Spiking Neural Networks: A Review of Theories and Methods [33.377770671553336]
スパイキングニューラルネットワーク(SNN)は、人工ニューラルネットワーク(ANN)の代替として有望なエネルギー効率を提供する
本稿では,より深いSNNを高い性能で訓練するための理論と手法を要約する新しい視点を提供する。
論文 参考訳(メタデータ) (2024-05-06T09:58:54Z) - Rethinking Causal Relationships Learning in Graph Neural Networks [24.7962807148905]
本稿では,GNNの因果学習能力を高めるために,軽量で適応可能なGNNモジュールを提案する。
提案モジュールの有効性を実証的に検証する。
論文 参考訳(メタデータ) (2023-12-15T08:54:32Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
機能的磁気共鳴イメージング(fMRI)データから抽出した機能的接続性(FC)ネットワークを訓練したディープニューラルネットワークが人気を博している。
グラフニューラルネットワーク(GNN)のFCへの適用に関する最近の研究は、FCの時間変化特性を活用することにより、モデル予測の精度と解釈可能性を大幅に向上させることができることを示唆している。
高品質なfMRIデータとそれに対応するラベルを取得するための高コストは、実環境において彼らのアプリケーションにハードルをもたらす。
本研究では,動的FC内の時間情報を効果的に活用するためのSSL生成手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T16:14:43Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - Functional Neural Networks: Shift invariant models for functional data
with applications to EEG classification [0.0]
我々は、データのスムーズさを保ちながら不変な新しいタイプのニューラルネットワークを導入する:関数型ニューラルネットワーク(FNN)
そこで我々は,多層パーセプトロンと畳み込みニューラルネットワークを機能データに拡張するために,機能データ分析(FDA)の手法を用いる。
脳波(EEG)データの分類にFNNをうまく利用し,FDAのベンチマークモデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-01-14T09:41:21Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
近年、時間依存データやイベント駆動データを扱う大きな可能性から、SNNへの関心が高まっている。
スパイキング計算における本質的な構造の影響を総合的に調査する研究が数多く行われている。
この研究はSNNの本質的な構造を深く掘り下げ、SNNの表現性への影響を解明する。
論文 参考訳(メタデータ) (2022-06-21T09:42:30Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN)は、そのパラメータにCanonical/Polyadic分解を課すテンソルベースの非線形学習モデルである。
まず、入力をマルチリニアアレイとして扱い、ベクトル化の必要性を回避し、すべてのデータ次元に沿って構造情報を十分に活用することができる。
Rank-R FNNの普遍的な近似と学習性の特性を確立し、実世界のハイパースペクトルデータセットのパフォーマンスを検証する。
論文 参考訳(メタデータ) (2021-04-11T16:37:32Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
ディープニューラルネットワーク(DNN)は、さまざまなタスクにおいて優れたパフォーマンスを達成した強力なブラックボックス予測器である。
本稿では、DNNの表現性と一般化した加法モデルの固有知性を組み合わせたニューラル付加モデル(NAM)を提案する。
NAMは、ニューラルネットワークの線形結合を学び、それぞれが単一の入力機能に付随する。
論文 参考訳(メタデータ) (2020-04-29T01:28:32Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
スパイキングニューラルネットワーク(SNN)は、時間的スパイクパターンを用いて情報を表現し、伝達する。
本稿では,情報符号化,シナプス可塑性,意思決定におけるスパイクタイミングダイナミクスの寄与について検討し,将来のDeepSNNやニューロモルフィックハードウェアシステムの設計への新たな視点を提供する。
論文 参考訳(メタデータ) (2020-03-26T11:13:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。