論文の概要: Prompted Software Engineering in the Era of AI Models
- arxiv url: http://arxiv.org/abs/2311.03359v1
- Date: Thu, 7 Sep 2023 20:40:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 16:30:18.824125
- Title: Prompted Software Engineering in the Era of AI Models
- Title(参考訳): AIモデルの時代における挑発的なソフトウェアエンジニアリング
- Authors: Dae-Kyoo Kim
- Abstract要約: 本稿では、言語ベースのAIモデルのための効果的なプロンプトを構築するために、プロンプトエンジニアリングを統合した、プロンプトソフトウェアエンジニアリング(PSE)を紹介する。
PSEは、ソフトウェア開発にAIモデルを使用することで、少ないリソースで高品質なソフトウェアを生産し、面倒なタスクを自動化し、開発者がより革新的な側面に集中できるようにする。
- 参考スコア(独自算出の注目度): 1.450405446885067
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces prompted software engineering (PSE), which integrates
prompt engineering to build effective prompts for language-based AI models, to
enhance the software development process. PSE enables the use of AI models in
software development to produce high-quality software with fewer resources,
automating tedious tasks and allowing developers to focus on more innovative
aspects. However, effective prompts are necessary to guide software development
in generating accurate, relevant, and useful responses, while mitigating risks
of misleading outputs. This paper describes how productive prompts should be
built throughout the software development cycle.
- Abstract(参考訳): 本稿では、プロンプトエンジニアリングを統合し、言語ベースのaiモデルの効果的なプロンプトを構築し、ソフトウェア開発プロセスを強化するpse(prompted software engineering)を紹介する。
PSEは、ソフトウェア開発にAIモデルを使用することで、少ないリソースで高品質なソフトウェアを生産し、面倒なタスクを自動化し、開発者がより革新的な側面に集中できるようにする。
しかし、効果的なプロンプトは、正確な、適切で有用な応答を生成しながら、誤ったアウトプットのリスクを軽減し、ソフトウェア開発を導くために必要である。
本稿では,ソフトウェア開発サイクルを通じて生産的なプロンプトを構築する方法を説明する。
関連論文リスト
- Agent-Driven Automatic Software Improvement [55.2480439325792]
本提案は,Large Language Models (LLMs) を利用したエージェントの展開に着目して,革新的なソリューションの探求を目的とする。
継続的学習と適応を可能にするエージェントの反復的性質は、コード生成における一般的な課題を克服するのに役立ちます。
我々は,これらのシステムにおける反復的なフィードバックを用いて,エージェントの基盤となるLLMをさらに微調整し,自動化されたソフトウェア改善のタスクに整合性を持たせることを目指している。
論文 参考訳(メタデータ) (2024-06-24T15:45:22Z) - Natural Language-Oriented Programming (NLOP): Towards Democratizing Software Creation [4.5318695190841884]
自然言語指向プログラミング(NLOP)は,本稿で紹介したビジョンである。
開発者は自然言語でソフトウェア要件とロジックを明確に記述し、それによってソフトウェア作成を民主化することができる。
本稿では、様々なプログラミングモデルについてレビューし、その貢献と限界を評価し、自然言語が新しいプログラミング言語であることを強調する。
論文 参考訳(メタデータ) (2024-06-08T09:13:54Z) - Bridging Gaps, Building Futures: Advancing Software Developer Diversity and Inclusion Through Future-Oriented Research [50.545824691484796]
我々はSEの多様性と包摂性に関する課題と解決策について、SE研究者や実践者から知見を提示する。
我々は,将来的なユートピアやディストピアのビジョンを共有し,今後の研究の方向性とアカデミックや産業への示唆を提供する。
論文 参考訳(メタデータ) (2024-04-10T16:18:11Z) - Dealing with Data for RE: Mitigating Challenges while using NLP and
Generative AI [2.9189409618561966]
本章では、ソフトウェア工学全般の進化する展望、特に要件工学(RE)について論じている。
自然言語処理(NLP)と生成AIをエンタープライズクリティカルなソフトウェアシステムに統合する際に生じる課題について論じる。
本は、読者に必要な知識とツールを提供するために、実践的な洞察、解決策、例を提供する。
論文 参考訳(メタデータ) (2024-02-26T19:19:47Z) - Exploring the intersection of Generative AI and Software Development [0.0]
生成AIとソフトウェアエンジニアリングの相乗効果は、変革的なフロンティアとして現れます。
このホワイトペーパーは、探索されていない領域に展開し、生成的AI技術がソフトウェア開発にどのように革命をもたらすかを解明する。
これはステークホルダーのためのガイドとして機能し、ソフトウェア工学における生成AIの適用に関する議論と実験を促している。
論文 参考訳(メタデータ) (2023-12-21T19:23:23Z) - Comparing Software Developers with ChatGPT: An Empirical Investigation [0.0]
本稿では,ChatGPTのようなソフトウェア技術者やAIシステムのパフォーマンスを,さまざまな評価指標で比較した実証的研究を行う。
この論文は、さまざまな評価基準を考慮して、ソフトウェアエンジニアとAIベースのソリューションの包括的な比較が、人間と機械のコラボレーションを促進する上で重要であることを示唆している。
論文 参考訳(メタデータ) (2023-05-19T17:25:54Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
私たちは倫理的考慮事項を(アジャイル)ソフトウェア開発プロセスに組み込む必要があると論じています。
私たちは、すでに存在しており、確立されたアジャイルソフトウェア開発プロセスで倫理的な議論を実施する可能性を強調しました。
論文 参考訳(メタデータ) (2021-07-15T11:14:03Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
本稿では,半導体製造プロセスに関する有用な知見を得るための動的アルゴリズムを提案する。
本稿では,遺伝的アルゴリズムとニューラルネットワークを利用して,知的特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-29T14:57:53Z) - Machine Learning for Software Engineering: A Systematic Mapping [73.30245214374027]
ソフトウェア開発業界は、現代のソフトウェアシステムを高度にインテリジェントで自己学習システムに移行するために、機械学習を急速に採用している。
ソフトウェアエンジニアリングライフサイクルの段階にわたって機械学習の採用について、現状を探求する包括的な研究は存在しない。
本研究は,機械学習によるソフトウェア工学(MLSE)分類を,ソフトウェア工学ライフサイクルのさまざまな段階に適用性に応じて,最先端の機械学習技術に分類するものである。
論文 参考訳(メタデータ) (2020-05-27T11:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。