論文の概要: Generative learning for nonlinear dynamics
- arxiv url: http://arxiv.org/abs/2311.04128v1
- Date: Tue, 7 Nov 2023 16:53:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-08 14:46:00.068278
- Title: Generative learning for nonlinear dynamics
- Title(参考訳): 非線形ダイナミクスのための生成学習
- Authors: William Gilpin
- Abstract要約: 生成機械学習モデルは、トレーニングデータを超えて、現実的なアウトプットを生成します。
これらの成功は、生成モデルが任意の複雑な分布を効果的にパラメータ化し、サンプリングすることを学ぶことを示唆している。
我々は,これらの古典作品と大規模生成統計学習の新たなテーマを結びつけることを目的としている。
- 参考スコア(独自算出の注目度): 7.6146285961466
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern generative machine learning models demonstrate surprising ability to
create realistic outputs far beyond their training data, such as photorealistic
artwork, accurate protein structures, or conversational text. These successes
suggest that generative models learn to effectively parametrize and sample
arbitrarily complex distributions. Beginning half a century ago, foundational
works in nonlinear dynamics used tools from information theory to infer
properties of chaotic attractors from time series, motivating the development
of algorithms for parametrizing chaos in real datasets. In this perspective, we
aim to connect these classical works to emerging themes in large-scale
generative statistical learning. We first consider classical attractor
reconstruction, which mirrors constraints on latent representations learned by
state space models of time series. We next revisit early efforts to use
symbolic approximations to compare minimal discrete generators underlying
complex processes, a problem relevant to modern efforts to distill and
interpret black-box statistical models. Emerging interdisciplinary works bridge
nonlinear dynamics and learning theory, such as operator-theoretic methods for
complex fluid flows, or detection of broken detailed balance in biological
datasets. We anticipate that future machine learning techniques may revisit
other classical concepts from nonlinear dynamics, such as transinformation
decay and complexity-entropy tradeoffs.
- Abstract(参考訳): 現代の生成機械学習モデルは、フォトリアリスティックアートワーク、正確なタンパク質構造、会話テキストなど、トレーニングデータを超えてリアルなアウトプットを作成する驚くべき能力を示している。
これらの成功は、生成モデルが任意に複雑な分布を効果的にパラメトリズしサンプルすることを学ぶことを示唆している。
半世紀ほど前、非線形力学の基礎研究は、情報理論のツールを使って時系列からカオスアトラクションの特性を推測し、実際のデータセットにおけるカオスをパラメータ化するアルゴリズムの開発を動機づけた。
この観点から、我々はこれらの古典作品と大規模生成統計学習の新たなテーマを結びつけることを目指している。
まず、時系列の状態空間モデルによって学習された潜在表現の制約を反映した古典的アトラクタ再構成を考える。
次に,ブラックボックス統計モデルを蒸留・解釈する現代の試みに関連する問題として,記号近似を用いて複雑なプロセスの基礎となる最小の離散発生器の比較を行う。
創発的な学際的な研究は、複雑な流体の流れの演算子理論法や、生物学的データセットにおける詳細バランスの破れた検出など、非線形力学と学習理論を橋渡しする。
将来の機械学習技術は、情報伝達の減衰や複雑性-エントロピーのトレードオフなど、非線形力学から他の古典的概念を再考する可能性があると予測する。
関連論文リスト
- Deep Learning for Koopman Operator Estimation in Idealized Atmospheric Dynamics [2.2489531925874013]
ディープラーニングは、気象予報に革命をもたらしており、新しいデータ駆動モデルは、中期予測のための運用物理モデルと同等の精度を達成している。
これらのモデルは解釈可能性に欠けることが多く、基礎となる力学を理解するのが難しく、説明が難しい。
本稿では、データ駆動モデルの透明性を高めるために、複雑な非線形力学の線形表現を提供するクープマン作用素を推定する手法を提案する。
論文 参考訳(メタデータ) (2024-09-10T13:56:54Z) - Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
我々は,関係学習をハイパーグラフリカバリとして形式化する数学的モデルを導入し,基礎モデル(FM)の事前学習について検討する。
我々のフレームワークでは、世界はハイパーグラフとして表現され、データはハイパーエッジからランダムなサンプルとして抽象化される。我々は、このハイパーグラフを復元するための事前学習モデル(PTM)の有効性を理論的に検証し、ミニマックスに近い最適スタイルでデータ効率を解析する。
論文 参考訳(メタデータ) (2024-06-17T06:20:39Z) - eXponential FAmily Dynamical Systems (XFADS): Large-scale nonlinear Gaussian state-space modeling [9.52474299688276]
非線形状態空間グラフィカルモデルのための低ランク構造化変分オートエンコーダフレームワークを提案する。
我々のアプローチは、より予測的な生成モデルを学ぶ能力を一貫して示している。
論文 参考訳(メタデータ) (2024-03-03T02:19:49Z) - Neural Koopman prior for data assimilation [7.875955593012905]
ニューラルネットワークアーキテクチャを使って、潜在空間に動的システムを埋め込む。
本研究では,このようなモデルを長期の継続的再構築のために訓練する手法を提案する。
また,変動データ同化手法の先行として,訓練された動的モデルの有望な利用を示すとともに,自己教師型学習の可能性も示された。
論文 参考訳(メタデータ) (2023-09-11T09:04:36Z) - Learning Differential Operators for Interpretable Time Series Modeling [34.32259687441212]
逐次データから解釈可能なPDEモデルを自動的に取得できる学習フレームワークを提案する。
我々のモデルは、貴重な解釈可能性を提供し、最先端モデルに匹敵する性能を達成することができる。
論文 参考訳(メタデータ) (2022-09-03T20:14:31Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
トレーニングセットとその構造が長期予測の品質に与える影響を考察する。
トレーニングセットのインフォームドデザインは,システムの不変性と基盤となるアトラクションの構造に基づいて,結果のモデルを大幅に改善することを示す。
論文 参考訳(メタデータ) (2021-12-15T20:09:20Z) - Learning Low-Dimensional Quadratic-Embeddings of High-Fidelity Nonlinear
Dynamics using Deep Learning [9.36739413306697]
データから動的モデルを学ぶことは、エンジニアリング設計、最適化、予測において重要な役割を果たす。
深層学習を用いて高忠実度力学系に対する低次元埋め込みを同定する。
論文 参考訳(メタデータ) (2021-11-25T10:09:00Z) - Causal Navigation by Continuous-time Neural Networks [108.84958284162857]
本研究では,連続時間ニューラルネットワークを用いた因果表現学習のための理論的,実験的枠組みを提案する。
本手法は,ドローンの視覚制御学習の文脈において,一連の複雑なタスクにおいて評価する。
論文 参考訳(メタデータ) (2021-06-15T17:45:32Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。