論文の概要: Chain of Empathy: Enhancing Empathetic Response of Large Language Models Based on Psychotherapy Models
- arxiv url: http://arxiv.org/abs/2311.04915v3
- Date: Sat, 14 Sep 2024 04:49:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 03:27:25.411608
- Title: Chain of Empathy: Enhancing Empathetic Response of Large Language Models Based on Psychotherapy Models
- Title(参考訳): 共感の連鎖:心理療法モデルに基づく大規模言語モデルの共感的反応の促進
- Authors: Yoon Kyung Lee, Inju Lee, Minjung Shin, Seoyeon Bae, Sowon Hahn,
- Abstract要約: 本稿では,心理療法の知見を活かして,大規模言語モデル(LLM)を誘導し,人間の感情状態を理解する新しい方法である「共感の連鎖(CoE)」を提案する。
この方法は認知行動療法(CBT)、弁証的行動療法(DBT)、人中心療法(PCT)、現実療法(RT)など様々な心理療法のアプローチにインスパイアされている。
- 参考スコア(独自算出の注目度): 2.679689033125693
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a novel method, the Chain of Empathy (CoE) prompting, that utilizes insights from psychotherapy to induce Large Language Models (LLMs) to reason about human emotional states. This method is inspired by various psychotherapy approaches including Cognitive Behavioral Therapy (CBT), Dialectical Behavior Therapy (DBT), Person Centered Therapy (PCT), and Reality Therapy (RT), each leading to different patterns of interpreting clients' mental states. LLMs without reasoning generated predominantly exploratory responses. However, when LLMs used CoE reasoning, we found a more comprehensive range of empathetic responses aligned with the different reasoning patterns of each psychotherapy model. The CBT based CoE resulted in the most balanced generation of empathetic responses. The findings underscore the importance of understanding the emotional context and how it affects human and AI communication. Our research contributes to understanding how psychotherapeutic models can be incorporated into LLMs, facilitating the development of context-specific, safer, and empathetic AI.
- Abstract(参考訳): 本稿では,心理療法の知見を活かして,大規模言語モデル(LLM)を誘導し,人間の感情状態を理解する新しい方法である「共感の連鎖(CoE)」を提案する。
この方法は、認知行動療法(CBT)、弁証的行動療法(DBT)、人中心療法(PCT)、現実療法(RT)といった様々な心理療法のアプローチにインスパイアされ、それぞれがクライアントの精神状態を解釈する様々なパターンに導かれる。
推論のないLLMは、主に探索的な応答を生み出した。
しかし, LLMがCoE推論を用いた場合, それぞれの心理療法モデルの異なる推論パターンに沿った, より包括的な共感反応が認められた。
CBTをベースとしたCoEは最もバランスの取れた共感反応を生み出した。
この調査結果は、感情的文脈を理解することの重要性と、それが人間とAIのコミュニケーションにどのように影響するかを浮き彫りにしている。
我々の研究は、精神療法モデルをLLMに組み込む方法の理解に寄与し、文脈固有の、より安全で共感的なAIの開発を促進する。
関連論文リスト
- CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
認知行動療法(CBT)支援の体系的評価のための新しいベンチマークであるCBT-BENCHを提案する。
我々は, CBT-BENCHにおける3段階の課題を含む: I: 基本的CBT知識獲得, 複数選択質問のタスク; II: 認知的モデル理解, 認知的歪み分類, 主根的信念分類, きめ細かい中核信念分類のタスク; III: 治療的応答生成, CBTセラピーセッションにおける患者音声に対する応答生成のタスク。
実験結果から,LLMはCBT知識のリサイティングに優れるが,複雑な実世界のシナリオでは不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-17T04:52:57Z) - Therapy as an NLP Task: Psychologists' Comparison of LLMs and Human Peers in CBT [6.812247730094931]
本研究は,大規模言語モデル(LLM)をエビデンスベースの治療の担い手として用いる可能性と限界について検討する。
認知行動療法(CBT)に根ざした公衆アクセス型メンタルヘルスの会話を再現し,セッションダイナミクスとカウンセラーのCBTに基づく行動の比較を行った。
その結果, ピアセッションは共感, 小話, セラピーアライアンス, 共有体験が特徴であるが, セラピストのドリフトがしばしば現れることがわかった。
論文 参考訳(メタデータ) (2024-09-03T19:19:13Z) - Are Large Language Models Possible to Conduct Cognitive Behavioral Therapy? [13.0263170692984]
大規模言語モデル(LLM)が検証され、心理的補助療法の新たな可能性を提供する。
精神保健の専門家は、LSMを治療に使用することについて多くの懸念を抱いている。
自然言語処理性能に優れた4つのLLM変種を評価した。
論文 参考訳(メタデータ) (2024-07-25T03:01:47Z) - APTNESS: Incorporating Appraisal Theory and Emotion Support Strategies for Empathetic Response Generation [71.26755736617478]
共感反応生成は、他人の感情を理解するように設計されている。
検索強化と感情支援戦略統合を組み合わせたフレームワークを開発する。
我々の枠組みは認知的・情緒的共感の両面からLLMの共感能力を高めることができる。
論文 参考訳(メタデータ) (2024-07-23T02:23:37Z) - Quantifying AI Psychology: A Psychometrics Benchmark for Large Language Models [57.518784855080334]
大きな言語モデル(LLM)は例外的なタスク解決能力を示しており、人間に似た役割を担っている。
本稿では,LLMにおける心理学的次元を調査するための枠組みとして,心理学的識別,評価データセットのキュレーション,結果検証による評価について述べる。
本研究では,個性,価値観,感情,心の理論,モチベーション,知性の6つの心理学的側面を網羅した総合的心理測定ベンチマークを導入する。
論文 参考訳(メタデータ) (2024-06-25T16:09:08Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - HealMe: Harnessing Cognitive Reframing in Large Language Models for Psychotherapy [25.908522131646258]
メンタルエンハンスメント(HealMe)モデルにおける適応言語によるヘルピングとエンパワーメントについて紹介する。
この新しい認知的リフレーミング療法は、根深い否定的思考に効果的に対処し、合理的でバランスの取れた視点を育む。
我々は、認知リフレーミングのパフォーマンスを厳格に評価するために特別に設計された、包括的で専門的な心理学的評価指標を採用した。
論文 参考訳(メタデータ) (2024-02-26T09:10:34Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
心理的な測定は、精神健康、自己理解、そして個人の発達に不可欠である。
心理学ゲームAgenT(サイコガト)は、信頼性、収束妥当性、差別的妥当性などの心理学的指標において統計的に有意な卓越性を達成している。
論文 参考訳(メタデータ) (2024-02-19T18:00:30Z) - Illuminate: A novel approach for depression detection with explainable
analysis and proactive therapy using prompt engineering [0.0]
本稿では,GPT-4(Generative Pre-trained Transformer 4),Llama 2 chat,およびGeminiを用いた抑うつ検出・治療のための新しいパラダイムを提案する。
LLMは、うつ病の診断、説明、治療介入を提案する特別なプロンプトで微調整されている。
論文 参考訳(メタデータ) (2024-02-05T06:08:06Z) - Evaluating the Efficacy of Interactive Language Therapy Based on LLM for
High-Functioning Autistic Adolescent Psychological Counseling [1.1780706927049207]
本研究では,高機能自閉症青年に対する対話型言語治療におけるLarge Language Models(LLMs)の有効性について検討した。
LLMは、従来の心理学的カウンセリング手法を強化する新しい機会を提供する。
論文 参考訳(メタデータ) (2023-11-12T07:55:39Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。