論文の概要: Mirror: Multimodal Cognitive Reframing Therapy for Rolling with Resistance
- arxiv url: http://arxiv.org/abs/2504.13211v1
- Date: Wed, 16 Apr 2025 08:44:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-28 20:59:10.439668
- Title: Mirror: Multimodal Cognitive Reframing Therapy for Rolling with Resistance
- Title(参考訳): ミラー:マルチモーダル認知反射療法
- Authors: Subin Kim, Hoonrae Kim, Jihyun Lee, Yejin Jeon, Gary Geunbae Lee,
- Abstract要約: 我々は、非言語的な手がかりを取り入れたマルチモーダルアプローチを提案し、AIセラピストは、クライアントのネガティブな感情状態に応答をより良く整合させることができる。
具体的には,新しい合成データセットであるMultimodal Interactive Rolling with Resistance (Mirror)を導入する。
このデータセットを用いて、顔の手がかりを分析し、感情を推測し、共感的な反応を生成し、抵抗を効果的に管理できるベースライン視覚言語モデル(VLM)を訓練する。
その結果、MirrorはAIセラピストの抵抗処理能力を大幅に向上させ、既存のテキストベースのCBTアプローチよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 16.354732392120845
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Recent studies have explored the use of large language models (LLMs) in psychotherapy; however, text-based cognitive behavioral therapy (CBT) models often struggle with client resistance, which can weaken therapeutic alliance. To address this, we propose a multimodal approach that incorporates nonverbal cues, allowing the AI therapist to better align its responses with the client's negative emotional state. Specifically, we introduce a new synthetic dataset, Multimodal Interactive Rolling with Resistance (Mirror), which is a novel synthetic dataset that pairs client statements with corresponding facial images. Using this dataset, we train baseline Vision-Language Models (VLMs) that can analyze facial cues, infer emotions, and generate empathetic responses to effectively manage resistance. They are then evaluated in terms of both the therapist's counseling skills and the strength of the therapeutic alliance in the presence of client resistance. Our results demonstrate that Mirror significantly enhances the AI therapist's ability to handle resistance, which outperforms existing text-based CBT approaches.
- Abstract(参考訳): 近年、心理療法における大規模言語モデル(LLM)の使用について研究されているが、テキストベースの認知行動療法(CBT)モデルはクライアントの抵抗に苦しむことが多く、治療提携を弱める可能性がある。
これを解決するために、非言語的手がかりを取り入れたマルチモーダルアプローチを提案し、AIセラピストがクライアントのネガティブな感情状態とよりよく対応できるようにする。
具体的には,新しい合成データセットであるMultimodal Interactive Rolling with Resistance (Mirror)を導入する。
このデータセットを用いて、顔の手がかりを分析し、感情を推測し、共感的な反応を生成し、抵抗を効果的に管理できるベースライン視覚言語モデル(VLM)を訓練する。
次に, セラピストのカウンセリングスキルと, クライアント抵抗の有無による治療提携の強さの両面から評価する。
その結果、MirrorはAIセラピストの抵抗処理能力を大幅に向上させ、既存のテキストベースのCBTアプローチよりも優れていることが示された。
関連論文リスト
- Multimodal Cognitive Reframing Therapy via Multi-hop Psychotherapeutic Reasoning [6.468510459310326]
我々はM2CoSC(Multi Modal-Cognitive Support Conversation)と呼ばれる新しいデータセットを提案する。
GPT-4生成ダイアログと仮想クライアントの表情を反映した画像とをペアリングする。
表情が暗黙的な感情的エビデンスを解釈する実際の心理療法をより良く反映するために,我々はマルチホップ・サイコセラピー的推論アプローチを提案する。
論文 参考訳(メタデータ) (2025-02-08T07:32:48Z) - AutoCBT: An Autonomous Multi-agent Framework for Cognitive Behavioral Therapy in Psychological Counseling [57.054489290192535]
伝統的な個人の心理カウンセリングは主にニッチであり、心理学的な問題を持つ個人によって選択されることが多い。
オンラインの自動カウンセリングは、恥の感情によって助けを求めることをためらう人たちに潜在的な解決策を提供する。
論文 参考訳(メタデータ) (2025-01-16T09:57:12Z) - LlaMADRS: Prompting Large Language Models for Interview-Based Depression Assessment [75.44934940580112]
LlaMADRSは、オープンソースのLarge Language Models(LLM)を利用して、うつ病の重症度評価を自動化する新しいフレームワークである。
本研究は,クリニカルインタヴューの解釈・スコアリングにおけるモデル指導のために,慎重に設計された手がかりを用いたゼロショットプロンプト戦略を用いている。
実世界における236件のインタビューを対象とし,臨床評価と強い相関性を示した。
論文 参考訳(メタデータ) (2025-01-07T08:49:04Z) - CBT-Bench: Evaluating Large Language Models on Assisting Cognitive Behavior Therapy [67.23830698947637]
認知行動療法(CBT)支援の体系的評価のための新しいベンチマークであるCBT-BENCHを提案する。
我々は, CBT-BENCHにおける3段階の課題を含む: I: 基本的CBT知識獲得, 複数選択質問のタスク; II: 認知的モデル理解, 認知的歪み分類, 主根的信念分類, きめ細かい中核信念分類のタスク; III: 治療的応答生成, CBTセラピーセッションにおける患者音声に対する応答生成のタスク。
実験結果から,LLMはCBT知識のリサイティングに優れるが,複雑な実世界のシナリオでは不十分であることが示唆された。
論文 参考訳(メタデータ) (2024-10-17T04:52:57Z) - Multimodal Fusion with LLMs for Engagement Prediction in Natural Conversation [70.52558242336988]
我々は,不関心や混乱の兆候を検出することを目的として,言語的および非言語的手がかりを精査することにより,ダイアディック的相互作用における係り合いを予測することに焦点を当てた。
本研究では,カジュアルなダイアディック会話に携わる34人の参加者を対象に,各会話の最後に自己報告されたエンゲージメント評価を行うデータセットを収集する。
大規模言語モデル(LLMs)を用いた新たな融合戦略を導入し,複数行動モダリティをマルチモーダル・トランスクリプトに統合する。
論文 参考訳(メタデータ) (2024-09-13T18:28:12Z) - Are Large Language Models Possible to Conduct Cognitive Behavioral Therapy? [13.0263170692984]
大規模言語モデル(LLM)が検証され、心理的補助療法の新たな可能性を提供する。
精神保健の専門家は、LSMを治療に使用することについて多くの懸念を抱いている。
自然言語処理性能に優れた4つのLLM変種を評価した。
論文 参考訳(メタデータ) (2024-07-25T03:01:47Z) - HealMe: Harnessing Cognitive Reframing in Large Language Models for Psychotherapy [25.908522131646258]
メンタルエンハンスメント(HealMe)モデルにおける適応言語によるヘルピングとエンパワーメントについて紹介する。
この新しい認知的リフレーミング療法は、根深い否定的思考に効果的に対処し、合理的でバランスの取れた視点を育む。
我々は、認知リフレーミングのパフォーマンスを厳格に評価するために特別に設計された、包括的で専門的な心理学的評価指標を採用した。
論文 参考訳(メタデータ) (2024-02-26T09:10:34Z) - Chain of Empathy: Enhancing Empathetic Response of Large Language Models Based on Psychotherapy Models [2.679689033125693]
本稿では,心理療法の知見を活かして,大規模言語モデル(LLM)を誘導し,人間の感情状態を理解する新しい方法である「共感の連鎖(CoE)」を提案する。
この方法は認知行動療法(CBT)、弁証的行動療法(DBT)、人中心療法(PCT)、現実療法(RT)など様々な心理療法のアプローチにインスパイアされている。
論文 参考訳(メタデータ) (2023-11-02T02:21:39Z) - Building Emotional Support Chatbots in the Era of LLMs [64.06811786616471]
我々は,Large Language Models (LLMs) の計算能力で人間の洞察を合成する革新的な方法論を導入する。
また,ChatGPTの文脈内学習の可能性を利用して,ExTESと呼ばれる感情支援対話データセットを生成する。
次に、LLaMAモデルに高度なチューニング手法を展開し、多様なトレーニング戦略の影響を検証し、最終的に感情的支援の相互作用に細心の注意を払ってLLMを出力する。
論文 参考訳(メタデータ) (2023-08-17T10:49:18Z) - Automated Quality Assessment of Cognitive Behavioral Therapy Sessions
Through Highly Contextualized Language Representations [34.670548892766625]
認知行動療法(Cognitive Behavioral Therapy, CBT)という,特定の心理療法の行動自動スコアリングモデルを提案する。
このモデルは高い解釈可能性を達成するためにマルチタスクで訓練される。
BERTベースの表現は、利用可能な治療メタデータでさらに拡張され、関連する非言語的コンテキストを提供し、一貫したパフォーマンス改善につながります。
論文 参考訳(メタデータ) (2021-02-23T09:22:29Z) - MET: Multimodal Perception of Engagement for Telehealth [52.54282887530756]
ビデオから人間のエンゲージメントレベルを知覚する学習ベースアルゴリズムMETを提案する。
我々はメンタルヘルス患者のエンゲージメント検出のための新しいデータセットMEDICAをリリースした。
論文 参考訳(メタデータ) (2020-11-17T15:18:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。