Prompt Engineering a Prompt Engineer
- URL: http://arxiv.org/abs/2311.05661v3
- Date: Wed, 3 Jul 2024 01:29:20 GMT
- Title: Prompt Engineering a Prompt Engineer
- Authors: Qinyuan Ye, Maxamed Axmed, Reid Pryzant, Fereshte Khani,
- Abstract summary: We argue that large language models can be meta-prompted to perform automatic prompt engineering.
We fill this gap by infusing into the meta-prompt three key components: detailed descriptions, context specification, and a step-by-step reasoning template.
The resulting method, named PE2, exhibits remarkable versatility across diverse language tasks.
- Score: 10.798308109737862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prompt engineering is a challenging yet crucial task for optimizing the performance of large language models on customized tasks. It requires complex reasoning to examine the model's errors, hypothesize what is missing or misleading in the current prompt, and communicate the task with clarity. While recent works indicate that large language models can be meta-prompted to perform automatic prompt engineering, we argue that their potential is limited due to insufficient guidance for complex reasoning in the meta-prompt. We fill this gap by infusing into the meta-prompt three key components: detailed descriptions, context specification, and a step-by-step reasoning template. The resulting method, named PE2, exhibits remarkable versatility across diverse language tasks. It finds prompts that outperform "let's think step by step" by 6.3% on MultiArith and 3.1% on GSM8K, and outperforms competitive baselines on counterfactual tasks by 6.9%. Further, we show that PE2 can make targeted and highly specific prompt edits, rectify erroneous prompts, and induce multi-step plans for complex tasks.
Related papers
- MOPrompt: Multi-objective Semantic Evolution for Prompt Optimization [0.0699049312989311]
MOPrompt is a novel framework designed to optimize prompts for both accuracy and context size (measured in tokens) simultaneously.<n>We evaluate MOPrompt on a sentiment analysis task in Portuguese, using Gemma-2B and Sabiazinho-3 as evaluation models.
arXiv Detail & Related papers (2025-08-03T01:50:43Z) - Grammar-Guided Evolutionary Search for Discrete Prompt Optimisation [63.97051732013936]
We propose an evolutionary search approach to automated discrete prompt optimisation consisting of two phases.<n>In the first phase, grammar-guided genetic programming is invoked to synthesise prompt-creating programmes.<n>In the second phase, local search is applied to explore the neighbourhoods of best-performing programmes.
arXiv Detail & Related papers (2025-07-14T14:34:15Z) - OmniParser V2: Structured-Points-of-Thought for Unified Visual Text Parsing and Its Generality to Multimodal Large Language Models [58.45517851437422]
Visually-situated text parsing (VsTP) has recently seen notable advancements, driven by the growing demand for automated document understanding.
Existing solutions often rely on task-specific architectures and objectives for individual tasks.
In this paper, we introduce Omni V2, a universal model that unifies VsTP typical tasks, including text spotting, key information extraction, table recognition, and layout analysis.
arXiv Detail & Related papers (2025-02-22T09:32:01Z) - TAPO: Task-Referenced Adaptation for Prompt Optimization [18.533289140594146]
We introduce TAPO, a multitask-aware prompt optimization framework composed of three key modules.
First, a task-aware metric selection module is proposed to enhance task-specific prompt generation capabilities.
Second, we present a multi-metrics evaluation module to jointly evaluate prompts from multiple perspectives.
Third, an evolution-based optimization framework is introduced for automatic prompt refinement, which improves adaptability across various tasks.
arXiv Detail & Related papers (2025-01-12T02:43:59Z) - Efficient Prompting Methods for Large Language Models: A Survey [50.82812214830023]
Efficient Prompting Methods have attracted a wide range of attention.
We discuss Automatic Prompt Engineering for different prompt components and Prompt Compression in continuous and discrete spaces.
arXiv Detail & Related papers (2024-04-01T12:19:08Z) - Exploring Prompt Engineering Practices in the Enterprise [3.7882262667445734]
A prompt is a natural language instruction designed to elicit certain behaviour or output from a model.
For complex tasks and tasks with specific requirements, prompt design is not trivial.
We analyze sessions of prompt editing behavior, categorizing the parts of prompts users iterated on and the types of changes they made.
arXiv Detail & Related papers (2024-03-13T20:32:32Z) - TransPrompt v2: A Transferable Prompting Framework for Cross-task Text
Classification [37.824031151922604]
We propose TransPrompt v2, a novel transferable prompting framework for few-shot learning across similar or distant text classification tasks.
For learning across similar tasks, we employ a multi-task meta-knowledge acquisition (MMA) procedure to train a meta-learner.
For learning across distant tasks, we inject the task type descriptions into the prompt, and capture the intra-type and inter-type prompt embeddings.
arXiv Detail & Related papers (2023-08-29T04:16:57Z) - Robot Task Planning Based on Large Language Model Representing Knowledge
with Directed Graph Structures [2.3698227130544547]
We propose a task planning method that combines human expertise with an LLM and have designed an LLM prompt template, Think_Net_Prompt.
We further propose a method to progressively decompose tasks and generate a task tree to reduce the planning volume for each task.
arXiv Detail & Related papers (2023-06-08T13:10:00Z) - Large Language Models in the Workplace: A Case Study on Prompt
Engineering for Job Type Classification [58.720142291102135]
This case study investigates the task of job classification in a real-world setting.
The goal is to determine whether an English-language job posting is appropriate for a graduate or entry-level position.
arXiv Detail & Related papers (2023-03-13T14:09:53Z) - Demystifying Prompts in Language Models via Perplexity Estimation [109.59105230163041]
Performance of a prompt is coupled with the extent to which the model is familiar with the language it contains.
We show that the lower the perplexity of the prompt is, the better the prompt is able to perform the task.
arXiv Detail & Related papers (2022-12-08T02:21:47Z) - Decomposed Prompting: A Modular Approach for Solving Complex Tasks [55.42850359286304]
We propose Decomposed Prompting to solve complex tasks by decomposing them (via prompting) into simpler sub-tasks.
This modular structure allows each prompt to be optimized for its specific sub-task.
We show that the flexibility and modularity of Decomposed Prompting allows it to outperform prior work on few-shot prompting.
arXiv Detail & Related papers (2022-10-05T17:28:20Z) - Improving Task Generalization via Unified Schema Prompt [87.31158568180514]
Unified Prompt is a flexible and prompting method, which automatically customizes the learnable prompts for each task according to the task input schema.
It models the shared knowledge between tasks, while keeping the characteristics of different task schema.
The framework achieves strong zero-shot and few-shot performance on 16 unseen tasks downstream from 8 task types.
arXiv Detail & Related papers (2022-08-05T15:26:36Z) - Reframing Instructional Prompts to GPTk's Language [72.69833640335519]
We propose reframing techniques for model designers to create effective prompts for language models.
Our results show that reframing improves few-shot learning performance by 14% while reducing sample complexity.
The performance gains are particularly important on large language models, such as GPT3 where tuning models or prompts on large datasets is not feasible.
arXiv Detail & Related papers (2021-09-16T09:44:43Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
This paper proposes Comprehensive Instruction (CINS) that exploits PLMs with task-specific instructions.
We design a schema (definition, constraint, prompt) of instructions and their customized realizations for three important downstream tasks in ToD.
Experiments are conducted on these ToD tasks in realistic few-shot learning scenarios with small validation data.
arXiv Detail & Related papers (2021-09-10T03:23:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.