Efficient Classical Computation of Single-Qubit Marginal Measurement Probabilities to Simulate Certain Classes of Quantum Algorithms
- URL: http://arxiv.org/abs/2411.06822v1
- Date: Mon, 11 Nov 2024 09:30:33 GMT
- Title: Efficient Classical Computation of Single-Qubit Marginal Measurement Probabilities to Simulate Certain Classes of Quantum Algorithms
- Authors: Santana Y. Pradata, M 'Anin N. 'Azhiim, Hendry M. Lim, Ahmad R. T. Nugraha,
- Abstract summary: We introduce a novel CNOT "functional" that leverages neural networks to generate unitary transformations.
For random circuit simulations, our modified QC-DFT enables efficient computation of single-qubit marginal measurement probabilities.
- Score: 0.0
- License:
- Abstract: Classical simulations of quantum circuits are essential for verifying and benchmarking quantum algorithms, particularly for large circuits, where computational demands increase exponentially with the number of qubits. Among available methods, the classical simulation of quantum circuits inspired by density functional theory -- the so-called QC-DFT method, shows promise for large circuit simulations as it approximates the quantum circuits using single-qubit reduced density matrices to model multi-qubit systems. However, the QC-DFT method performs very poorly when dealing with multi-qubit gates. In this work, we introduce a novel CNOT "functional" that leverages neural networks to generate unitary transformations, effectively mitigating the simulation errors observed in the original QC-DFT method. For random circuit simulations, our modified QC-DFT enables efficient computation of single-qubit marginal measurement probabilities, or single-qubit probability (SQPs), and achieves lower SQP errors and higher fidelities than the original QC-DFT method. Despite limitations in capturing full entanglement and joint probability distributions, we find potential applications of SQPs in simulating Shor's and Grover's algorithms for specific solution classes. These findings advance the capabilities of classical simulations for some quantum problems and provide insights into managing entanglement and gate errors in practical quantum computing.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
We propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer.
Our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits.
In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation.
arXiv Detail & Related papers (2023-12-03T13:56:41Z) - Efficient Mean-Field Simulation of Quantum Circuits Inspired by Density
Functional Theory [1.3561290928375374]
Exact simulations of quantum circuits (QCs) are currently limited to $sim$50 qubits.
Here we show simulations of QCs with a method inspired by density functional theory (DFT)
Our calculations can predict marginal single-qubit probabilities with over 90% accuracy in several classes of QCs with universal gate sets.
arXiv Detail & Related papers (2022-10-29T02:12:15Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Quantum Robustness Verification: A Hybrid Quantum-Classical Neural
Network Certification Algorithm [1.439946676159516]
In this work, we investigate the verification of ReLU networks, which involves solving a robustness many-variable mixed-integer programs (MIPs)
To alleviate this issue, we propose to use QC for neural network verification and introduce a hybrid quantum procedure to compute provable certificates.
We show that, in a simulated environment, our certificate is sound, and provide bounds on the minimum number of qubits necessary to approximate the problem.
arXiv Detail & Related papers (2022-05-02T13:23:56Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Towards a NISQ Algorithm to Simulate Hermitian Matrix Exponentiation [0.0]
A practical fault-tolerant quantum computer is worth looking forward to as it provides applications that outperform their known classical counterparts.
It would take decades to make it happen, exploiting the power of noisy intermediate-scale quantum(NISQ) devices, which already exist, is becoming one of current goals.
In this article, a method is reported as simulating a hermitian matrix exponentiation using parametrized quantum circuit.
arXiv Detail & Related papers (2021-05-28T06:37:12Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Randomizing multi-product formulas for Hamiltonian simulation [2.2049183478692584]
We introduce a scheme for quantum simulation that unites the advantages of randomized compiling on the one hand and higher-order multi-product formulas on the other.
Our framework reduces the circuit depth by circumventing the need for oblivious amplitude amplification.
Our algorithms achieve a simulation error that shrinks exponentially with the circuit depth.
arXiv Detail & Related papers (2021-01-19T19:00:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.