論文の概要: Hierarchical deep learning-based adaptive time-stepping scheme for
multiscale simulations
- arxiv url: http://arxiv.org/abs/2311.05961v1
- Date: Fri, 10 Nov 2023 09:47:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 15:32:45.866216
- Title: Hierarchical deep learning-based adaptive time-stepping scheme for
multiscale simulations
- Title(参考訳): 階層型ディープラーニングによるマルチスケールシミュレーションのための適応時間ステップ方式
- Authors: Asif Hamid, Danish Rafiq, Shahkar Ahmad Nahvi, Mohammad Abid Bazaz
- Abstract要約: 本研究では,ディープニューラルネットワークを用いたマルチスケール問題のシミュレーション手法を提案する。
ニューラルネットワークのタイムステッパーの階層的学習を活用することで、タイムスケールにわたる動的システムフローマップの近似に時間ステップを適用する。
このアプローチは、固定ステップニューラルネットワークソルバと比較して計算時間が少なくて最先端の性能を実現する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiscale is a hallmark feature of complex nonlinear systems. While the
simulation using the classical numerical methods is restricted by the local
\textit{Taylor} series constraints, the multiscale techniques are often limited
by finding heuristic closures. This study proposes a new method for simulating
multiscale problems using deep neural networks. By leveraging the hierarchical
learning of neural network time steppers, the method adapts time steps to
approximate dynamical system flow maps across timescales. This approach
achieves state-of-the-art performance in less computational time compared to
fixed-step neural network solvers. The proposed method is demonstrated on
several nonlinear dynamical systems, and source codes are provided for
implementation. This method has the potential to benefit multiscale analysis of
complex systems and encourage further investigation in this area.
- Abstract(参考訳): マルチスケールは複雑な非線形システムの特徴である。
古典的数値法を用いたシミュレーションは局所的 \textit{Taylor} 級数制約によって制限されるが、マルチスケール手法はヒューリスティック閉包を見つけることで制限されることが多い。
本研究では,ディープニューラルネットワークを用いたマルチスケール問題のシミュレーション手法を提案する。
ニューラルネットワークの時間ステップの階層的学習を活用し、時間スケールをまたいだ動的システムフローマップの近似に時間ステップを適用する。
このアプローチは、固定ステップニューラルネットワークソルバと比較して計算時間が少なくて最先端の性能を実現する。
提案手法は複数の非線形力学系上で実証され,実装のためのソースコードが提供される。
この手法は複雑なシステムのマルチスケール解析に有効であり、この分野のさらなる研究を促進する可能性がある。
関連論文リスト
- Gradient-free training of recurrent neural networks [3.272216546040443]
本稿では,勾配に基づく手法を使わずに再帰型ニューラルネットワークの重みとバイアスを全て構成する計算手法を提案する。
このアプローチは、動的システムに対するランダムな特徴ネットワークとクープマン作用素理論の組み合わせに基づいている。
時系列の計算実験,カオス力学系の予測,制御問題などにおいて,構築したリカレントニューラルネットワークのトレーニング時間と予測精度が向上することが観察された。
論文 参考訳(メタデータ) (2024-10-30T21:24:34Z) - Enhancing Computational Efficiency in Multiscale Systems Using Deep Learning of Coordinates and Flow Maps [0.0]
本稿では,マルチスケールシステムにおいて,ディープラーニング技術を用いて正確なタイムステッピング手法を構築する方法について述べる。
結果として得られるフレームワークは、より少ない計算コストで最先端の予測精度を達成する。
論文 参考訳(メタデータ) (2024-04-28T14:05:13Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
我々は、シーケンス固有のモデルベースのオートエンコーダをトレーニングすることで、そのようなデータの必要性を軽減する、深層無学習の自己教師付き学習を導入する。
提案手法は, 監視対象の性能を超過する。
論文 参考訳(メタデータ) (2024-03-25T17:40:32Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Multisymplectic Formulation of Deep Learning Using Mean--Field Type
Control and Nonlinear Stability of Training Algorithm [0.0]
我々は,マルチシンプレクティック構造を持つ流体力学系として,ディープニューラルネットワークのトレーニングを定式化する。
そのため、ディープニューラルネットワークは微分方程式を用いてモデル化され、平均場型制御を用いて学習する。
数値スキームは、多重シンプレクティック構造を持つ流体力学系の正確な解でもある近似解を生成する。
論文 参考訳(メタデータ) (2022-07-07T23:14:12Z) - A Deep Gradient Correction Method for Iteratively Solving Linear Systems [5.744903762364991]
本稿では, 方程式の大, 疎, 対称, 正定値線形系の解を近似する新しい手法を提案する。
我々のアルゴリズムは、少数の反復で与えられた許容度に残留する線形系を減少させることができる。
論文 参考訳(メタデータ) (2022-05-22T06:40:38Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
既存の不確実性推定アルゴリズムでは、モデルアーキテクチャとトレーニング手順を変更する必要がある。
本研究では、与えられたトレーニングされたニューラルネットワークに適用し、近似予測間隔を生成できる新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-06T13:18:31Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
微分可能シミュレータと新しいポリシー学習アルゴリズム(SHAC)を提案する。
本アルゴリズムは,スムーズな批判機能により局所最小化の問題を軽減する。
現状のRLと微分可能なシミュレーションベースアルゴリズムと比較して,サンプル効率と壁面時間を大幅に改善した。
論文 参考訳(メタデータ) (2022-04-14T17:46:26Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Hierarchical Deep Learning of Multiscale Differential Equation
Time-Steppers [5.6385744392820465]
本研究では,時間スケールの異なる範囲にわたる動的システムのフローマップを近似するために,ディープニューラルネットワークの時間ステップ階層を構築した。
結果のモデルは純粋にデータ駆動であり、マルチスケールのダイナミックスの特徴を活用する。
我々は,LSTM,貯水池計算,クロックワークRNNなどの最先端手法に対して,我々のアルゴリズムをベンチマークする。
論文 参考訳(メタデータ) (2020-08-22T07:16:53Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。