論文の概要: Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows
- arxiv url: http://arxiv.org/abs/2207.14366v1
- Date: Thu, 28 Jul 2022 19:59:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-01 13:31:25.316092
- Title: Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows
- Title(参考訳): 部分微分演算子と動的流れの半教師付き学習
- Authors: Michael Rotman, Amit Dekel, Ran Ilan Ber, Lior Wolf, Yaron Oz
- Abstract要約: 本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
- 参考スコア(独自算出の注目度): 68.77595310155365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The evolution of dynamical systems is generically governed by nonlinear
partial differential equations (PDEs), whose solution, in a simulation
framework, requires vast amounts of computational resources. In this work, we
present a novel method that combines a hyper-network solver with a Fourier
Neural Operator architecture. Our method treats time and space separately. As a
result, it successfully propagates initial conditions in continuous time steps
by employing the general composition properties of the partial differential
operators. Following previous work, supervision is provided at a specific time
point. We test our method on various time evolution PDEs, including nonlinear
fluid flows in one, two, and three spatial dimensions. The results show that
the new method improves the learning accuracy at the time point of supervision
point, and is able to interpolate and the solutions to any intermediate time.
- Abstract(参考訳): 力学系の進化は一般に非線形偏微分方程式(PDE)によって制御され、その解はシミュレーションフレームワークにおいて膨大な計算資源を必要とする。
本研究では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
我々の方法は時間と空間を別々に扱う。
その結果、偏微分作用素の一般組成特性を利用することで、連続時間ステップにおける初期条件の伝播に成功した。
以前の作業の後、特定の時点に監督が提供される。
1次元,2次元,3次元の非線形流体流を含む様々な時間発展pdesについて実験を行った。
その結果,本手法は,監視点の学習精度が向上し,任意の中間時間に対して補間や解の補間が可能となった。
関連論文リスト
- PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
我々は,複数の支配方程式にまたがるニューラル演算子一般化を同時に改善する,新しいコントラスト事前学習フレームワークを開発する。
物理インフォームドシステムの進化と潜在空間モデル出力の組み合わせは、入力データに固定され、我々の距離関数で使用される。
物理インフォームドコントラストプレトレーニングにより,1次元および2次元熱,バーガーズ,線形対流方程式に対する固定フューチャーおよび自己回帰ロールアウトタスクにおけるフーリエニューラル演算子の精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-01-29T17:32:22Z) - Equivariant Graph Neural Operator for Modeling 3D Dynamics [148.98826858078556]
我々は,次のステップの予測ではなく,ダイナミックスを直接トラジェクトリとしてモデル化するために,Equivariant Graph Neural Operator (EGNO)を提案する。
EGNOは3次元力学の時間的進化を明示的に学習し、時間とともに関数として力学を定式化し、それを近似するためにニューラル演算子を学習する。
粒子シミュレーション、人間のモーションキャプチャー、分子動力学を含む複数の領域における総合的な実験は、既存の手法と比較して、EGNOの極めて優れた性能を示す。
論文 参考訳(メタデータ) (2024-01-19T21:50:32Z) - Invertible Solution of Neural Differential Equations for Analysis of
Irregularly-Sampled Time Series [4.14360329494344]
本稿では,不規則な時系列データと不完全時系列データの複雑度を扱うために,ニューラル微分方程式(NDE)に基づく非可逆解を提案する。
計算負荷を低く抑えながら可逆性を確保するニューラルフローを用いたニューラル制御微分方程式(Neural Controlled Differential Equations, ニューラルCDE)の変動について提案する。
我々のアプローチの核となるのは拡張された二重潜在状態アーキテクチャであり、様々な時系列タスクにおいて高精度に設計されている。
論文 参考訳(メタデータ) (2024-01-10T07:51:02Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Long-time integration of parametric evolution equations with
physics-informed DeepONets [0.0]
ランダムな初期条件を関連するPDE解に短時間でマッピングする無限次元演算子を学習するための効果的なフレームワークを提案する。
その後、訓練されたモデルを反復的に評価することにより、一連の初期条件にわたるグローバルな長期予測が得られる。
これは時間領域分解に対する新しいアプローチを導入し、正確な長期シミュレーションを実行するのに有効であることを示した。
論文 参考訳(メタデータ) (2021-06-09T20:46:17Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Hierarchical Deep Learning of Multiscale Differential Equation
Time-Steppers [5.6385744392820465]
本研究では,時間スケールの異なる範囲にわたる動的システムのフローマップを近似するために,ディープニューラルネットワークの時間ステップ階層を構築した。
結果のモデルは純粋にデータ駆動であり、マルチスケールのダイナミックスの特徴を活用する。
我々は,LSTM,貯水池計算,クロックワークRNNなどの最先端手法に対して,我々のアルゴリズムをベンチマークする。
論文 参考訳(メタデータ) (2020-08-22T07:16:53Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - FiniteNet: A Fully Convolutional LSTM Network Architecture for
Time-Dependent Partial Differential Equations [0.0]
我々は、PDEのダイナミクスを利用するために、完全に畳み込みLSTMネットワークを使用する。
ベースラインアルゴリズムと比較して,ネットワークの誤差を2~3倍に削減できることを示す。
論文 参考訳(メタデータ) (2020-02-07T21:18:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。