論文の概要: Search-Based Fairness Testing: An Overview
- arxiv url: http://arxiv.org/abs/2311.06175v1
- Date: Fri, 10 Nov 2023 16:47:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-13 14:42:39.979784
- Title: Search-Based Fairness Testing: An Overview
- Title(参考訳): 検索ベースフェアネステスト:概要
- Authors: Hussaini Mamman, Shuib Basri, Abdullateef Oluwaqbemiga Balogun,
Abdullahi Abubakar Imam, Ganesh Kumar, Luiz Fernando Capretz
- Abstract要約: AIシステムのバイアスは倫理的・社会的懸念を引き起こす。
本稿では, フェアネステストの現状, 特に検索ベーステストによる適用について概説する。
- 参考スコア(独自算出の注目度): 4.453735522794044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Intelligence (AI) has demonstrated remarkable capabilities in
domains such as recruitment, finance, healthcare, and the judiciary. However,
biases in AI systems raise ethical and societal concerns, emphasizing the need
for effective fairness testing methods. This paper reviews current research on
fairness testing, particularly its application through search-based testing.
Our analysis highlights progress and identifies areas of improvement in
addressing AI systems biases. Future research should focus on leveraging
established search-based testing methodologies for fairness testing.
- Abstract(参考訳): 人工知能(AI)は、採用、財務、医療、司法などの領域で顕著な能力を発揮している。
しかし、AIシステムのバイアスは倫理的および社会的関心を高め、効果的な公平性テスト方法の必要性を強調している。
本稿では,フェアネステスト,特に検索ベーステストの応用に関する最近の研究を概観する。
我々の分析は、AIシステムのバイアスに対処する上での進歩を強調し、改善の領域を特定する。
今後の研究は、確立した検索ベースのテスト手法を公平性テストに活用することに集中すべきである。
関連論文リスト
- Fairness in AI-Driven Recruitment: Challenges, Metrics, Methods, and Future Directions [0.0]
ビッグデータと機械学習は、従来の採用プロセスに急激な変革をもたらした。
AIベースの採用の頻度を考えると、人間の偏見がこれらのシステムによって決定される可能性があるという懸念が高まっている。
本稿では、AIによる採用におけるバイアスの種類を議論することで、この新興分野の包括的概要を提供する。
論文 参考訳(メタデータ) (2024-05-30T05:25:14Z) - Towards Clinical AI Fairness: Filling Gaps in the Puzzle [15.543248260582217]
このレビューでは、医療データと提供されたAIフェアネスソリューションの両方に関して、いくつかの欠陥を体系的に指摘する。
AI技術がますます活用されている多くの医療分野において、AIフェアネスの研究の欠如を強調している。
これらのギャップを埋めるために、我々のレビューは医療研究コミュニティとAI研究コミュニティの両方にとって実行可能な戦略を前進させます。
論文 参考訳(メタデータ) (2024-05-28T07:42:55Z) - Survey of Computerized Adaptive Testing: A Machine Learning Perspective [66.26687542572974]
コンピュータ適応テスト (Computerized Adaptive Testing, CAT) は、試験の熟練度を評価するための効率的で調整された方法である。
本稿では,この適応テスト手法に対する新たな視点を提示し,機械学習に着目したCATに関する調査を行うことを目的とする。
論文 参考訳(メタデータ) (2024-03-31T15:09:47Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
この研究は、人工知能を自律走行車(AV)に統合する複雑さを探求する
AIコンポーネントがもたらした課題と、テスト手順への影響を調べます。
本稿は、重要な課題を特定し、AV技術におけるAIの研究・開発に向けた今後の方向性を提案する。
論文 参考訳(メタデータ) (2024-02-21T08:29:42Z) - Predictable Artificial Intelligence [67.79118050651908]
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
本稿では,予測可能なAIに関する疑問,仮説,課題を解明することを目的とする。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Towards FATE in AI for Social Media and Healthcare: A Systematic Review [0.0]
この調査は、AIの文脈における公正性、説明責任、透明性、倫理(FATE)の概念に焦点を当てている。
統計的および交差点的公正性は,ソーシャルメディアプラットフォーム上での医療の公平性を支持することが判明した。
シミュレーション、データ分析、自動システムといったソリューションは広く使われているが、その効果は様々である。
論文 参考訳(メタデータ) (2023-06-05T17:25:42Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - Error Parity Fairness: Testing for Group Fairness in Regression Tasks [5.076419064097733]
この研究は、回帰フェアネスの概念としてエラーパリティを示し、グループフェアネスを評価するためのテスト手法を導入する。
続いて、いくつかの統計上のグループを比較し、格差を探索し、影響されたグループを特定するのに適した置換テストが実施される。
全体として、提案された回帰公正性テスト手法は、公正な機械学習文献のギャップを埋め、より大きなアカウンタビリティ評価とアルゴリズム監査の一部として機能する可能性がある。
論文 参考訳(メタデータ) (2022-08-16T17:47:20Z) - Metaethical Perspectives on 'Benchmarking' AI Ethics [81.65697003067841]
ベンチマークは、人工知能(AI)研究の技術的進歩を測定するための基盤とみられている。
AIの顕著な研究領域は倫理であり、現在、ベンチマークのセットも、AIシステムの「倫理性」を測定する一般的な方法もない。
我々は、現在と将来のAIシステムのアクションを考えるとき、倫理よりも「価値」について話す方が理にかなっていると論じる。
論文 参考訳(メタデータ) (2022-04-11T14:36:39Z) - A Framework for Fairness: A Systematic Review of Existing Fair AI
Solutions [4.594159253008448]
公正性の研究の大部分は、機械学習の実践者がアルゴリズムを設計しながらバイアスを監査するために使用できるツールの開発に費やされている。
実際には、これらの公平性ソリューションの応用例が欠如している。
このレビューでは、定義されたアルゴリズムバイアス問題と提案された公正解空間の詳細な概要について述べる。
論文 参考訳(メタデータ) (2021-12-10T17:51:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。