論文の概要: Post-COVID Highlights: Challenges and Solutions of AI Techniques for
Swift Identification of COVID-19
- arxiv url: http://arxiv.org/abs/2311.06258v2
- Date: Fri, 24 Nov 2023 13:44:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-28 02:26:23.878066
- Title: Post-COVID Highlights: Challenges and Solutions of AI Techniques for
Swift Identification of COVID-19
- Title(参考訳): 新型コロナウイルスの迅速診断のためのai技術の課題と解決策
- Authors: Yingying Fang, Xiaodan Xing, Shiyi Wang, Simon Walsh, Guang Yang
- Abstract要約: 2019年の新型コロナウイルス(COVID-19)パンデミックの開始以来、コスト効率、非侵襲性、迅速なAIベースのツールの開発に協力してきた。
このレビューは、パンデミックの間に生じた多面的課題に対処するために設計された多様なソリューションに関する洞察を提供する努力である。
- 参考スコア(独自算出の注目度): 6.927994520150374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Since the onset of the COVID-19 pandemic in 2019, there has been a concerted
effort to develop cost-effective, non-invasive, and rapid AI-based tools. These
tools were intended to alleviate the burden on healthcare systems, control the
rapid spread of the virus, and enhance intervention outcomes, all in response
to this unprecedented global crisis. As we transition into a post-COVID era, we
retrospectively evaluate these proposed studies and offer a review of the
techniques employed in AI diagnostic models, with a focus on the solutions
proposed for different challenges. This review endeavors to provide insights
into the diverse solutions designed to address the multifaceted challenges that
arose during the pandemic. By doing so, we aim to prepare the AI community for
the development of AI tools tailored to address public health emergencies
effectively.
- Abstract(参考訳): 2019年の新型コロナウイルス(COVID-19)パンデミックの開始以来、コスト効率、非侵襲性、迅速なAIベースのツールの開発に協力してきた。
これらのツールは、前例のない世界的な危機に対応するために、医療システムの負担を軽減し、ウイルスの急速な拡散を制御し、介入結果を高めることを目的としていた。
ポスト新型コロナウイルス時代へ移行するにつれて、これらの提案された研究を振り返って評価し、AI診断モデルで採用されるテクニックのレビューを行い、さまざまな課題に対して提案された解決策に焦点を当てます。
このレビューは、パンデミックの間に生じた多面的課題に対処するために設計された多様なソリューションに関する洞察を提供する努力である。
そうすることで、公衆衛生の緊急事態を効果的に解決するためのAIツールの開発のために、AIコミュニティを準備します。
関連論文リスト
- A Survey on Computer Vision based Human Analysis in the COVID-19 Era [58.79053747159797]
新型コロナウイルスの出現は、社会全体だけでなく、個人の生活にも大きく影響している。
マスクやソーシャルディスタンシングの義務、公共空間での定期消毒、スクリーニングアプリケーションの使用など、さまざまな予防策が世界中で導入されている。
これらの発展は、(i)視覚データの自動解析による予防対策の支援、(ii)生体認証などの既存の視覚ベースのサービスの正常な操作を容易にする、新しいコンピュータビジョン技術の必要性を喚起した。
論文 参考訳(メタデータ) (2022-11-07T17:20:39Z) - COVID-Net Biochem: An Explainability-driven Framework to Building
Machine Learning Models for Predicting Survival and Kidney Injury of COVID-19
Patients from Clinical and Biochemistry Data [66.43957431843324]
我々は、機械学習モデルを構築するための汎用的で説明可能なフレームワークであるCOVID-Net Biochemを紹介する。
この枠組みを用いて、新型コロナウイルス患者の生存率と、入院中に急性腎不全を発症する可能性を予測する。
論文 参考訳(メタデータ) (2022-04-24T07:38:37Z) - Explainable Artificial Intelligence Methods in Combating Pandemics: A
Systematic Review [7.140215556873923]
新型コロナウイルス(COVID-19)パンデミックにおける人工知能の影響は、モデルの透明性の欠如によって大幅に制限された。
XAIをうまく利用すれば、モデルの性能を改善し、エンドユーザに信頼を与え、ユーザの意思決定に影響を与えるのに必要な価値を提供することができる。
論文 参考訳(メタデータ) (2021-12-23T16:55:27Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
我々は,肺POCUS画像からの新型コロナウイルススクリーニングに適した,高効率で自己注意型の深層畳み込みニューラルネットワーク設計であるCOVID-Net USを紹介した。
実験の結果、提案されたCOVID-Net USは、アーキテクチャの複雑さが353倍、計算の複雑さが62倍、Raspberry Piで14.3倍高速なAUCを達成できることがわかった。
リソース制約のある環境において安価な医療と人工知能を提唱するために、COVID-Net USをオープンソースにし、COVID-Netオープンソースイニシアチブの一部として公開しました。
論文 参考訳(メタデータ) (2021-08-05T16:47:33Z) - A Survey on Applications of Artificial Intelligence in Fighting Against
COVID-19 [75.84689958489724]
SARS-CoV-2ウイルスによる新型コロナウイルスのパンデミックは世界中で急速に広がり、世界的な感染拡大につながっている。
新型コロナウイルス対策の強力なツールとして、人工知能(AI)技術はこのパンデミックに対抗するために広く利用されている。
この調査では、新型コロナウイルス対策におけるAIテクノロジの既存および潜在的応用に関する包括的見解を、医療とAI研究者に提示する。
論文 参考訳(メタデータ) (2020-07-04T22:48:15Z) - Artificial Intelligence-based Clinical Decision Support for COVID-19 --
Where Art Thou? [19.068540069452347]
我々は,AIに基づく臨床意思決定支援システムの機会と要件を同定する。
急激なヘルスケアの課題に対する"AIの準備"に影響を与える課題を強調します。
論文 参考訳(メタデータ) (2020-06-05T13:34:47Z) - The challenges of deploying artificial intelligence models in a rapidly
evolving pandemic [10.188172055060544]
我々は、AIモデルの可能性を加速するために、基礎研究と応用研究の両方が不可欠であると主張する。
この視点は、世界の科学コミュニティが将来の病気の発生に対してより効果的に対処する方法を垣間見ることができるかもしれない。
論文 参考訳(メタデータ) (2020-05-19T21:11:48Z) - Review of Artificial Intelligence Techniques in Imaging Data
Acquisition, Segmentation and Diagnosis for COVID-19 [71.41929762209328]
新型コロナウイルス感染症(COVID-19)のパンデミックは世界中に広がっている。
X線やCT(Computerd Tomography)などの医用画像は、世界的な新型コロナウイルス対策に欠かせない役割を担っている。
最近登場した人工知能(AI)技術は、画像ツールの力を強化し、医療専門家を支援する。
論文 参考訳(メタデータ) (2020-04-06T15:21:34Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
世界保健機関(WHO)は、SARS-CoV-2ウイルスによる新型コロナウイルスの感染をパンデミックと宣言した。
我々は、機械学習と、より広範に、人工知能を用いた最近の研究の概要を、新型コロナウイルス危機の多くの側面に取り組むために提示する。
論文 参考訳(メタデータ) (2020-03-25T12:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。