Coherent spatial control of wave packet dynamics on quantum lattices
- URL: http://arxiv.org/abs/2311.07254v1
- Date: Mon, 13 Nov 2023 11:39:35 GMT
- Title: Coherent spatial control of wave packet dynamics on quantum lattices
- Authors: Ilia Tutunnikov, Chern Chuang, Jianshu Cao
- Abstract summary: We study wave packet diffusivity and diffusion length on quantum lattices subject to noise.
Our analysis points to the crucial role of spatial coherence and predicts a set of novel phenomena.
These theoretical predictions suggest the possibility of controlling the wave packet dynamics on quantum lattices by spatial manipulations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum lattices are pivotal in the burgeoning fields of quantum materials
and information science. Rapid developments in microscopy and quantum
engineering allow for preparing and monitoring wave-packet dynamics on quantum
lattices with increasing spatial and temporal resolution. Motivated by these
emerging research interests, we present an analytical study of wave packet
diffusivity and diffusion length on tight-binding quantum lattices subject to
stochastic noise. Our analysis points to the crucial role of spatial coherence
and predicts a set of novel phenomena: noise can enhance the transient
diffusivity and diffusion length of sufficiently extended initial states; A
smooth Gaussian initial state spreads slower than a localized initial state; A
standing or traveling initial state with large momentum spreads faster than a
localized initial state and exhibits a noise-induced peak in the transient
diffusivity; The change in the time-dependent diffusivity and diffusion length
relative to a localized initial state follows a universal dependence on the
Gaussian width. These theoretical predictions and the underlying mechanism of
spatial coherence suggest the possibility of controlling the wave packet
dynamics on quantum lattices by spatial manipulations, which will have
implications for materials science and quantum technologies.
Related papers
- Simulating a quasiparticle on a quantum device [0.0]
We propose a variational approach to explore quasiparticle excitations in interacting quantum many-body systems.
We benchmark the proposed algorithm via numerical simulations performed on the one-dimension transverse field Ising chain.
We show that the localized quasiparticle states constructed with VQE contain accessible information on the full band of quasiparticles.
arXiv Detail & Related papers (2024-09-13T05:39:13Z) - Coherent expansion of the motional state of a massive nanoparticle beyond its linear dimensions [0.0]
Quantum mechanics predicts that massive particles exhibit wave-like behavior.
We experimentally achieve an unprecedented degree of position diffusion in a massive levitated optomechanical system.
arXiv Detail & Related papers (2024-08-18T21:11:09Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Spatiotemporal Quenches for Efficient Critical Ground State Preparation in Two-Dimensional Quantum Systems [0.0]
We show the effectiveness of quenches in rapidly preparing ground states in critical phases.
Our simulations reveal the existence of an optimal quench front velocity at the emergent speed of light.
These findings emphasize the potential of quenchtemporal quenches efficient ground state preparation in quantum systems.
arXiv Detail & Related papers (2024-04-03T18:00:01Z) - Witnessing Light-Driven Entanglement using Time-Resolved Resonant
Inelastic X-Ray Scattering [8.180110565400524]
Characterizing and controlling entanglement in quantum materials is crucial for the development of next-generation quantum technologies.
We propose a systematic approach to quantify the time-dependent quantum Fisher information and entanglement depth of transient states of quantum materials.
Our work sets the stage for experimentally witnessing and controlling entanglement in light-driven quantum materials via ultrafast spectroscopic measurements.
arXiv Detail & Related papers (2022-09-06T08:13:15Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Spacetime effects on wavepackets of coherent light [24.587462517914865]
We introduce an operational way to distinguish between the overall shift in the pulse wavepacket and its genuine deformation after propagation.
We then apply our technique to quantum states of photons that are coherent in the frequency degree of freedom.
We find that the quantum coherence initially present can enhance the deformation induced by propagation in a curved background.
arXiv Detail & Related papers (2021-06-23T14:20:19Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.