論文の概要: Cross-Dialect Sentence Transformation: A Comparative Analysis of
Language Models for Adapting Sentences to British English
- arxiv url: http://arxiv.org/abs/2311.07583v1
- Date: Sun, 5 Nov 2023 12:56:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-19 14:17:23.923568
- Title: Cross-Dialect Sentence Transformation: A Comparative Analysis of
Language Models for Adapting Sentences to British English
- Title(参考訳): 横断的文変換:英国英語への文適応のための言語モデルの比較分析
- Authors: Shruti Dutta, Shashwat Mookherjee
- Abstract要約: 本研究は、アメリカ、インド、アイルランドの英語方言の言語的区別について考察する。
様々な言語モデル(LLM)を評価し、これらの方言から英国英語の翻訳を生成する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This study explores linguistic distinctions among American, Indian, and Irish
English dialects and assesses various Language Models (LLMs) in their ability
to generate British English translations from these dialects. Using cosine
similarity analysis, the study measures the linguistic proximity between
original British English translations and those produced by LLMs for each
dialect. The findings reveal that Indian and Irish English translations
maintain notably high similarity scores, suggesting strong linguistic alignment
with British English. In contrast, American English exhibits slightly lower
similarity, reflecting its distinct linguistic traits. Additionally, the choice
of LLM significantly impacts translation quality, with Llama-2-70b consistently
demonstrating superior performance. The study underscores the importance of
selecting the right model for dialect translation, emphasizing the role of
linguistic expertise and contextual understanding in achieving accurate
translations.
- Abstract(参考訳): 本研究は、アメリカ、インド、アイルランドの英語方言の言語的区別を調査し、これらの方言から英英翻訳を生成する能力において、様々な言語モデル(LLM)を評価する。
この研究は、コサイン類似度分析を用いて、英語の原文翻訳と各方言のllms翻訳の言語的近接度を測定した。
この結果から、インド英語とアイルランド英語の翻訳は特に類似度が高く、イギリス英語との強い言語的連携が示唆された。
対照的に、アメリカ英語の類似性はやや低く、独特の言語的特徴を反映している。
加えて、LLMの選択は翻訳品質に大きな影響を及ぼし、Llama-2-70bは一貫して優れた性能を示した。
この研究は、正確な翻訳を達成するための言語的専門知識と文脈理解の役割を強調し、方言翻訳の正しいモデルを選択することの重要性を強調している。
関連論文リスト
- Dictionary Insertion Prompting for Multilingual Reasoning on Multilingual Large Language Models [52.00446751692225]
textbfDictionary textbfInsertion textbfPrompting (textbfDIP) という,新規かつシンプルで効果的な方法を提案する。
非英語のプロンプトを提供する際、DIPは単語辞書を調べ、単語の英語のプロンプトをLLMのプロンプトに挿入する。
そして、英語へのより良い翻訳とより良い英語モデル思考のステップを可能にし、明らかにより良い結果をもたらす。
論文 参考訳(メタデータ) (2024-11-02T05:10:50Z) - Thank You, Stingray: Multilingual Large Language Models Can Not (Yet) Disambiguate Cross-Lingual Word Sense [30.62699081329474]
本稿では,言語間感覚曖昧化のための新しいベンチマーク,StingrayBenchを紹介する。
インドネシア語とマレー語、インドネシア語とタガログ語、中国語と日本語、英語とドイツ語の4つの言語ペアで偽の友人を集めます。
各種モデルの解析において,高リソース言語に偏りが生じる傾向が見られた。
論文 参考訳(メタデータ) (2024-10-28T22:09:43Z) - Holmes: A Benchmark to Assess the Linguistic Competence of Language Models [59.627729608055006]
言語モデル(LM)の言語能力を評価するための新しいベンチマークであるHolmesを紹介する。
我々は、計算に基づく探索を用いて、異なる言語現象に関するLMの内部表現を調べる。
その結果,近年,他の認知能力からLMの言語能力を引き離す声が上がっている。
論文 参考訳(メタデータ) (2024-04-29T17:58:36Z) - Is Translation All You Need? A Study on Solving Multilingual Tasks with Large Language Models [79.46179534911019]
大規模言語モデル (LLM) は多言語機能を示しているが、トレーニングコーパスの不均衡のため、主に英語中心である。
この作業は、NLPタスクから実際のユーザクエリまで、評価を拡張します。
深い言語理解を必要とする文化関連のタスクでは、ネイティブ言語のプロンプトがより有望になる傾向があります。
論文 参考訳(メタデータ) (2024-03-15T12:47:39Z) - Decomposed Prompting: Unveiling Multilingual Linguistic Structure
Knowledge in English-Centric Large Language Models [12.700783525558721]
GPT-3やLLaMAのような英語中心のLarge Language Models (LLM)は、多言語タスクを実行する素晴らしい能力を示している。
本稿では,シーケンスラベリングタスクにおいて,これらのLLMの言語構造理解を探索するための分解的プロンプト手法を提案する。
論文 参考訳(メタデータ) (2024-02-28T15:15:39Z) - Could We Have Had Better Multilingual LLMs If English Was Not the Central Language? [4.655168524016426]
大規模言語モデル(LLM)は、トレーニング対象の言語に対して強力な機械翻訳能力を示す。
我々の研究は、Llama2の翻訳能力について論じている。
実験の結果,7B Llama2モデルはこれまでに見たすべての言語に翻訳すると10 BLEU以上になることがわかった。
論文 参考訳(メタデータ) (2024-02-21T16:32:38Z) - Cross-Linguistic Syntactic Difference in Multilingual BERT: How Good is
It and How Does It Affect Transfer? [50.48082721476612]
マルチリンガルBERT (mBERT) は, 言語間シンタクティックな機能を示した。
我々は,mBERTから引き起こされる文法的関係の分布を,24言語に類型的に異なる文脈で検討した。
論文 参考訳(メタデータ) (2022-12-21T09:44:08Z) - Does Transliteration Help Multilingual Language Modeling? [0.0]
多言語言語モデルに対する音訳の効果を実証的に測定する。
私たちは、世界で最もスクリプトの多様性が高いIndic言語にフォーカスしています。
比較的高いソースコード言語に悪影響を及ぼすことなく、低リソース言語にトランスリテラゼーションが有効であることに気付きました。
論文 参考訳(メタデータ) (2022-01-29T05:48:42Z) - How do lexical semantics affect translation? An empirical study [1.0152838128195467]
本稿では,ソースとターゲット言語間の単語の順序付けと語彙的類似性が翻訳性能に与える影響について検討する。
対象言語が英語に類似するほど、翻訳性能が向上することがわかった。
さらに、英単語列における単語(POS)の一部を含むNMTモデルの提供が与える影響について検討した。
論文 参考訳(メタデータ) (2021-12-31T23:28:28Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。