論文の概要: Graph Signal Diffusion Model for Collaborative Filtering
- arxiv url: http://arxiv.org/abs/2311.08744v2
- Date: Tue, 26 Mar 2024 08:14:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-28 00:31:37.651360
- Title: Graph Signal Diffusion Model for Collaborative Filtering
- Title(参考訳): 協調フィルタリングのためのグラフ信号拡散モデル
- Authors: Yunqin Zhu, Chao Wang, Qi Zhang, Hui Xiong,
- Abstract要約: 協調フィルタリングはレコメンデータシステムにおいて重要な手法である。
我々は新しい拡散モデルの適応を行い、協調フィルタリングのためのグラフ信号拡散モデル(GiffCF)を提案する。
GiffCFは拡散モデルとグラフ信号処理の両方の利点を効果的に利用し、3つのベンチマークデータセット上で最先端のパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 22.727100820178414
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative filtering is a critical technique in recommender systems. Among various methods, an increasingly popular paradigm is to reconstruct user-item interactions based on the historical observations. This can be viewed as a conditional generative task, where recently developed diffusion model demonstrates great potential. However, existing studies on diffusion models lack effective solutions for modeling implicit feedback data. Particularly, the isotropic nature of the standard diffusion process fails to account for the heterogeneous dependencies among items, leading to a misalignment with the graphical structure of the interaction space. Meanwhile, random noise destroying personalized information in interaction vectors, causing difficulty in reverse reconstruction. In this paper, we make novel adaptions of diffusion model and propose Graph Signal Diffusion Model for Collaborative Filtering (named GiffCF). To better represent the high-dimensional and sparse distribution of implicit feedback, we define a generalized form of denoising diffusion using heat equation on the item-item similarity graph. Our forward process smooths interaction signals with an advanced family of graph filters. Hence, instead of losing information, it involves item-item similarities as beneficial prior knowledge for recommendation. To reconstruct high-quality interactions, our reverse process iteratively refines and sharpens preference signals in a deterministic manner, where the update direction is conditioned on the user history and computed from a carefully designed two-stage denoiser. Finally, through extensive experiments, we show that GiffCF effectively leverages the advantages of both diffusion model and graph signal processing, and achieves state-of-the-art performance on three benchmark datasets.
- Abstract(参考訳): 協調フィルタリングはレコメンデータシステムにおいて重要な手法である。
様々な手法の中で、歴史観測に基づいてユーザとテムのインタラクションを再構築するパラダイムがますます人気になっている。
これは、最近開発された拡散モデルが大きなポテンシャルを示す条件付き生成タスクと見なすことができる。
しかし、既存の拡散モデルの研究は、暗黙のフィードバックデータをモデル化するための効果的な解決策を欠いている。
特に、標準拡散過程の等方性は、アイテム間の不均一な依存関係を考慮できないため、相互作用空間のグラフィカルな構造と不一致となる。
一方、ランダムノイズは相互作用ベクトルのパーソナライズされた情報を破壊し、逆復元が困難になる。
本稿では,新しい拡散モデルを適用し,協調フィルタリングのためのグラフ信号拡散モデル(GiffCF)を提案する。
暗黙のフィードバックの高次元分布とスパース分布をより良く表現するために、アイテム・イットム類似性グラフ上の熱方程式を用いた拡散の一般化形式を定義する。
我々のフォワードプロセスは、グラフフィルタの高度なファミリとの相互作用信号を円滑にする。
したがって、情報を失う代わりに、レコメンデーションのための有益な事前知識としてアイテムとアイテムの類似性を含んでいる。
高品質なインタラクションを再構築するために、我々のリバースプロセスは、ユーザ履歴に基づいて更新方向を条件付けし、慎重に設計された2段階のデノイザから計算する決定論的方法で、反復的に洗練され、選好信号のシャープ化を行う。
最後に、GiffCFは拡散モデルとグラフ信号処理の両方の利点を効果的に活用し、3つのベンチマークデータセットの最先端性能を実現することを示す。
関連論文リスト
- DeFoG: Discrete Flow Matching for Graph Generation [45.037260759871124]
グラフ生成のための離散フローマッチングを用いた新しいフレームワークであるDeFoGを提案する。
DeFoGはフローベースのアプローチを採用しており、効率的な線形雑音化プロセスと柔軟な雑音化プロセスを備えている。
我々は,DeFoGが合成および分子データセット上で最先端の結果を得ることを示す。
論文 参考訳(メタデータ) (2024-10-05T18:52:54Z) - Sub-graph Based Diffusion Model for Link Prediction [43.15741675617231]
拡散確率モデル(Denoising Diffusion Probabilistic Models, DDPM)は、例外的な品質を持つ同時代の生成モデルである。
本研究では,ベイズ式による確率推定過程を分解するために,専用設計を用いたリンク予測のための新しい生成モデルを構築した。
提案手法は,(1)再トレーニングを伴わないデータセット間の転送可能性,(2)限られたトレーニングデータに対する有望な一般化,(3)グラフ敵攻撃に対する堅牢性など,多くの利点を示す。
論文 参考訳(メタデータ) (2024-09-13T02:23:55Z) - Collaborative Filtering Based on Diffusion Models: Unveiling the Potential of High-Order Connectivity [10.683635786183894]
CF-Diffは新しい拡散モデルに基づく協調フィルタリング手法である。
マルチホップの隣人と一緒に、協調的な信号を完全に活用することができる。
最高の競争相手に比べて7.29%も上昇している。
論文 参考訳(メタデータ) (2024-04-22T14:49:46Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - ChiroDiff: Modelling chirographic data with Diffusion Models [132.5223191478268]
チャーログラフィーデータのための強力なモデルクラスである「拡散確率モデル(Denoising Diffusion Probabilistic Models)」やDDPMを導入している。
我々のモデルは「ChiroDiff」と呼ばれ、非自己回帰的であり、全体論的概念を捉えることを学び、したがって高い時間的サンプリングレートに回復する。
論文 参考訳(メタデータ) (2023-04-07T15:17:48Z) - Removing Structured Noise with Diffusion Models [14.187153638386379]
拡散モデルによる後方サンプリングの強力なパラダイムは、リッチで構造化されたノイズモデルを含むように拡張可能であることを示す。
構成雑音による様々な逆問題に対して高い性能向上を示し、競争的ベースラインよりも優れた性能を示す。
これにより、非ガウス測度モデルの文脈における逆問題に対する拡散モデリングの新しい機会と関連する実践的応用が開かれる。
論文 参考訳(メタデータ) (2023-01-20T23:42:25Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - DiGress: Discrete Denoising diffusion for graph generation [79.13904438217592]
DiGressは、分類ノードとエッジ属性を持つグラフを生成するための離散化拡散モデルである。
分子と非分子のデータセットで最先端のパフォーマンスを実現し、最大3倍の妥当性が向上する。
また、1.3Mの薬物様分子を含む大規模なGuacaMolデータセットにスケールする最初のモデルでもある。
論文 参考訳(メタデータ) (2022-09-29T12:55:03Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
本稿では,連続時間フレームワークを用いたグラフのスコアベース生成モデルを提案する。
本手法は, トレーニング分布に近い分子を生成できるが, 化学価数則に違反しないことを示す。
論文 参考訳(メタデータ) (2022-02-05T08:21:04Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
グラフ畳み込みネットワーク(GCN)は、最先端のグラフベースの表現学習モデルである。
本稿では、GCNベースの協調フィルタリング(CF)ベースのレコメンダシステム(RS)について再検討する。
単純なグラフ畳み込みネットワークの理論と整合して,非線形性を取り除くことで推奨性能が向上することを示す。
本稿では,ユーザ・イテム相互作用モデリングを用いたCF用に特別に設計された残差ネットワーク構造を提案する。
論文 参考訳(メタデータ) (2020-01-28T04:41:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。