Parallel Quantum Hough Transform
- URL: http://arxiv.org/abs/2311.09002v1
- Date: Wed, 15 Nov 2023 14:42:51 GMT
- Title: Parallel Quantum Hough Transform
- Authors: Frank Klefenz, Nico Wittrock, Frank Feldhoff
- Abstract summary: We propose a Parallel Quantum Hough transform (PQHT) algorithm that we execute on a quantum computer.
The modules were developed using IBM Quantum Composer and tested using the IBM QASM simulator.
The successful run results on Fraunhofer Q System One in Ehningen will be presented as a proof of concept for the PQHT algorithm.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Few of the known quantum algorithms can be reliably executed on a quantum
computer. Therefore, as an extension, we propose a Parallel Quantum Hough
transform (PQHT) algorithm that we execute on a quantum computer. We give its
implementation and discuss the results obtained. The PQHT algorithm is
conceptually divided into a parallel rotation stage consisting of a set of
connected programmable $\texttt{RZ}$ rotation gates, with adjustable node
connections of coincidence detectors realized with quantum logic gates. The
modules were developed using IBM Quantum Composer and tested using the IBM QASM
simulator. Finally, the modules were programmed using the Python package Qiskit
and the jobs were sent to distributed IBM Q System One quantum computers. The
successful run results on Fraunhofer Q System One in Ehningen will be presented
as a proof of concept for the PQHT algorithm.
Related papers
- Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Schrödinger as a Quantum Programmer: Estimating Entanglement via Steering [3.187381965457262]
We develop a quantum algorithm that tests for and quantifies the separability of a general bipartite state by using the quantum steering effect.
Our findings provide a meaningful connection between steering, entanglement, quantum algorithms, and quantum computational complexity theory.
arXiv Detail & Related papers (2023-03-14T13:55:06Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - TeD-Q: a tensor network enhanced distributed hybrid quantum machine
learning framework [59.07246314484875]
TeD-Q is an open-source software framework for quantum machine learning.
It seamlessly integrates classical machine learning libraries with quantum simulators.
It provides a graphical mode in which the quantum circuit and the training progress can be visualized in real-time.
arXiv Detail & Related papers (2023-01-13T09:35:05Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Quantum Netlist Compiler (QNC) [0.0]
We introduce the Quantum Netlist Compiler (QNC) that converts arbitrary unitary operators or desired initial states of quantum algorithms to OpenQASM-2.0 circuits.
The results show that QNC is well suited for quantum circuit optimization and produces circuits with competitive success rates in practice.
arXiv Detail & Related papers (2022-09-02T05:00:38Z) - Quantum Machine Learning for Software Supply Chain Attacks: How Far Can
We Go? [5.655023007686363]
This paper analyzes speed up performance of QC when applied to machine learning algorithms, known as Quantum Machine Learning (QML)
Due to limitations of real quantum computers, the QML methods were implemented on open-source quantum simulators such as Qiskit and IBM Quantum.
Interestingly, the experimental results differ to the speed up promises of QC by demonstrating higher computational time and lower accuracy in comparison to the classical approaches for SSC attacks.
arXiv Detail & Related papers (2022-04-04T21:16:06Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - A Quantum Dot Plot Generation Algorithm for Pairwise Sequence Alignment [0.0]
Quantum Pairwise Sequence Alignment (QPSA) algorithm offers exponential speedups in data alignment tasks.
It relies on an open problem of efficiently encoding the classical data being aligned into quantum superposition.
We provide an alternative, explicit construction of this oracle called the Quantum Dot Plot (QDP)
We evaluate QDP's operational complexity via analysis of the quantum machine instructions generated by the Q# and Qiskit software frameworks.
arXiv Detail & Related papers (2021-07-23T16:48:29Z) - Quantum Algorithms and Simulation for Parallel and Distributed Quantum
Computing [0.0]
A viable approach for building large-scale quantum computers is to interlink small-scale quantum computers with a quantum network.
We present our software framework called Interlin-q, a simulation platform that aims to simplify designing and verifying parallel and distributed quantum algorithms.
arXiv Detail & Related papers (2021-06-12T19:41:48Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.