論文の概要: LLM-based Control Code Generation using Image Recognition
- arxiv url: http://arxiv.org/abs/2311.10401v1
- Date: Fri, 17 Nov 2023 09:04:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-20 15:25:08.188420
- Title: LLM-based Control Code Generation using Image Recognition
- Title(参考訳): 画像認識を用いたLLM制御コード生成
- Authors: Heiko Koziolek, Anne Koziolek
- Abstract要約: 以前の制御ロジックコード生成の試みでは、プロセスエンジニアによる図面の解釈方法が欠けていた。
最近のLLMは、画像認識、訓練済みのドメイン知識、コーディングスキルを組み合わせている。
画像認識を用いたP&ID(Piping-and-Instrumentation Diagram)からIEC 61131-3構造テキスト制御ロジックのソースコードを生成するLLMベースの新しいコード生成手法を提案する。
- 参考スコア(独自算出の注目度): 2.1206136304665413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM-based code generation could save significant manual efforts in industrial
automation, where control engineers manually produce control logic for
sophisticated production processes. Previous attempts in control logic code
generation lacked methods to interpret schematic drawings from process
engineers. Recent LLMs now combine image recognition, trained domain knowledge,
and coding skills. We propose a novel LLM-based code generation method that
generates IEC 61131-3 Structure Text control logic source code from
Piping-and-Instrumentation Diagrams (P&IDs) using image recognition. We have
evaluated the method in three case study with industrial P&IDs and provide
first evidence on the feasibility of such a code generation besides experiences
on image recognition glitches.
- Abstract(参考訳): LLMベースのコード生成は、制御エンジニアが高度な生産プロセスのために手動で制御ロジックを作成する産業自動化における重要な手作業を救う可能性がある。
以前の制御ロジックコード生成の試みでは、プロセスエンジニアによる図面の解釈方法がなかった。
最近のLLMは、画像認識、訓練済みのドメイン知識、コーディングスキルを組み合わせている。
画像認識を用いたP&ID(Piping-and-Instrumentation Diagram)からIEC 61131-3構造テキスト制御ロジックのソースコードを生成するLLMベースの新しいコード生成手法を提案する。
本手法を産業用P&IDを用いた3つのケーススタディで評価し,画像認識における経験以外に,このようなコード生成の可能性に関する最初の証拠を提供する。
関連論文リスト
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [70.72097493954067]
コードのための大規模言語モデル(LLM)は、コード生成、推論タスク、エージェントシステムなど、さまざまな領域で必須になっている。
オープンアクセスのコード LLM はプロプライエタリなモデルの性能レベルに近づきつつあるが、高品質なコード LLM は依然として限られている。
トップクラスのコードLLMであるOpenCoderは、主要なモデルに匹敵するパフォーマンスを達成するだけでなく、研究コミュニティの"オープンクックブック"としても機能します。
論文 参考訳(メタデータ) (2024-11-07T17:47:25Z) - Multi-Programming Language Sandbox for LLMs [78.99934332554963]
大規模言語モデル(LLM)用のコンパイラと分析ツールから統一的で包括的なフィードバックを提供するように設計された、アウト・オブ・ザ・ボックスのマルチプログラミング言語サンドボックス
コードのプログラミング言語を自動的に識別し、独立したサブサンドボックス内でコンパイルして実行することで、安全性と安定性を確保することができる。
論文 参考訳(メタデータ) (2024-10-30T14:46:43Z) - RGD: Multi-LLM Based Agent Debugger via Refinement and Generation Guidance [0.6062751776009752]
大規模言語モデル(LLM)は、コード生成タスクにおいて驚くべきポテンシャルを示しています。
LLMはタスク記述に基づいてコードを生成することができるが、精度は限られている。
コード生成と自動デバッグのためのLLMエージェントの新しいアーキテクチャ:Refinement and Guidancebug (RGD)を紹介する。
RGDはコード生成タスクを複数のステップに分割し、より明確なワークフローを確保し、自己回帰とフィードバックに基づいた反復的なコード改善を可能にする。
論文 参考訳(メタデータ) (2024-10-02T05:07:02Z) - Combining LLM Code Generation with Formal Specifications and Reactive Program Synthesis [0.7580487359358722]
大規模言語モデル(LLM)は精度に苦しむが、リスクの高いアプリケーションには適さない。
コード生成を LLM で処理する部分と,形式的なメソッドベースのプログラム合成で処理する部分の2つに分割する手法を提案する。
論文 参考訳(メタデータ) (2024-09-18T15:59:06Z) - CodeIP: A Grammar-Guided Multi-Bit Watermark for Large Language Models of Code [56.019447113206006]
大規模言語モデル(LLM)はコード生成において顕著な進歩を遂げた。
CodeIPは、新しいマルチビット透かし技術で、出所の詳細を保存するために追加情報を埋め込む。
5つのプログラミング言語にまたがる実世界のデータセットで実施された実験は、CodeIPの有効性を実証している。
論文 参考訳(メタデータ) (2024-04-24T04:25:04Z) - CodecLM: Aligning Language Models with Tailored Synthetic Data [51.59223474427153]
命令追従能力のための高品質な合成データを適応的に生成するフレームワークであるCodecLMを紹介する。
まず、ターゲットの指示分布をキャプチャするために、オンザフライで生成された簡潔なキーワードであるメタデータにシード命令をエンコードする。
また、デコード中に自己論理とコントラストフィルタを導入し、データ効率の良いサンプルを調整する。
論文 参考訳(メタデータ) (2024-04-08T21:15:36Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Using LLM such as ChatGPT for Designing and Implementing a RISC
Processor: Execution,Challenges and Limitations [11.07566083431614]
この論文は、解析、トークン化、エンコーディング、アテンションメカニズム、コード生成時のトークンとイテレーションのサンプリングなど、関連するステップについてレビューする。
RISCコンポーネントの生成されたコードは、FPGA基板上でテストベンチとハードウェア実装によって検証される。
論文 参考訳(メタデータ) (2024-01-18T20:14:10Z) - Benchmarking and Explaining Large Language Model-based Code Generation:
A Causality-Centric Approach [12.214585409361126]
大規模言語モデル(LLM)ベースのコード生成は複雑で強力なブラックボックスモデルである。
本稿では,プロンプトと生成されたコードの因果グラフに基づく新しい表現を提案する。
我々は,12以上の迅速な調整戦略で3つの人気のあるLCMを研究することで,我々のフレームワークが提供できる洞察について説明する。
論文 参考訳(メタデータ) (2023-10-10T14:56:26Z) - Test-Case-Driven Programming Understanding in Large Language Models for
Better Code Generation [15.166827643436346]
muFiXは、大きな言語モデル(LLM)のコード生成性能を改善する新しいプロンプト技術である。
まず、テストケース分析を利用して仕様の理解を得、自己改善プロセスを可能にする。
muFiXはさらに、提供された理解と実際の理解の間のギャップを減らす方向に向けた仕様理解を修正している。
論文 参考訳(メタデータ) (2023-09-28T02:58:07Z) - LLM-CXR: Instruction-Finetuned LLM for CXR Image Understanding and Generation [51.08810811457617]
LLMにおける視覚言語アライメントは、マルチモーダル推論とビジュアルIOを可能にするために活発に研究されている。
医用画像の視覚言語能力を得るために,テキストのみにLLMを指導する手法を開発した。
このアプローチで訓練したLLM-CXRは,CXR理解タスクと生成タスクの両方において,より優れた画像テキストアライメントを示す。
論文 参考訳(メタデータ) (2023-05-19T07:44:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。