Task Scheduling Optimization from a Tensor Network Perspective
- URL: http://arxiv.org/abs/2311.10433v2
- Date: Thu, 20 Jun 2024 10:39:09 GMT
- Title: Task Scheduling Optimization from a Tensor Network Perspective
- Authors: Alejandro Mata Ali, Iñigo Perez Delgado, Beatriz García Markaida, Aitor Moreno Fdez. de Leceta,
- Abstract summary: We present a novel method for task optimization in industrial plants using quantum-inspired tensor network technology.
We simulate a quantum system with all possible combinations, perform an imaginary time evolution and a series of projections to satisfy the constraints.
- Score: 41.94295877935867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel method for task optimization in industrial plants using quantum-inspired tensor network technology. This method allows us to obtain the best possible combination of tasks on a set of machines with a set of constraints without having to evaluate all possible combinations. We simulate a quantum system with all possible combinations, perform an imaginary time evolution and a series of projections to satisfy the constraints. We improve its scalability by means of a compression method, an iterative algorithm, and a genetic algorithm, and show the results obtained on simulated cases.
Related papers
- Federated Conditional Stochastic Optimization [110.513884892319]
Conditional optimization has found in a wide range of machine learning tasks, such as in-variant learning tasks, AUPRC, andAML.
This paper proposes algorithms for distributed federated learning.
arXiv Detail & Related papers (2023-10-04T01:47:37Z) - Randomized Polar Codes for Anytime Distributed Machine Learning [66.46612460837147]
We present a novel distributed computing framework that is robust to slow compute nodes, and is capable of both approximate and exact computation of linear operations.
We propose a sequential decoding algorithm designed to handle real valued data while maintaining low computational complexity for recovery.
We demonstrate the potential applications of this framework in various contexts, such as large-scale matrix multiplication and black-box optimization.
arXiv Detail & Related papers (2023-09-01T18:02:04Z) - Quantum-Inspired Approximations to Constraint Satisfaction Problems [0.0]
This paper presents new algorithms for satisfying configurations using methods from Boolean Fourier analysis.
The approach is broadly inspired by the quantum amplitude amplification algorithm.
We demonstrate that satisfying solutions may be retrieved in a process analogous to quantum measurement made efficient by sparsity in the Fourier domain.
arXiv Detail & Related papers (2022-12-08T00:40:56Z) - AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks [12.229154524476405]
We develop a new algorithm, Annealed Skewed SGD - AskewSGD - for training deep neural networks (DNNs) with quantized weights.
Unlike algorithms with active sets and feasible directions, AskewSGD avoids projections or optimization under the entire feasible set.
Experimental results show that the AskewSGD algorithm performs better than or on par with state of the art methods in classical benchmarks.
arXiv Detail & Related papers (2022-11-07T18:13:44Z) - Constructing Optimal Contraction Trees for Tensor Network Quantum
Circuit Simulation [1.2704529528199062]
One of the key problems in quantum circuit simulation is the construction of a contraction tree.
We introduce a novel time algorithm for constructing an optimal contraction tree.
We show that our method achieves superior results on a majority of tested quantum circuits.
arXiv Detail & Related papers (2022-09-07T02:50:30Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Optimization of Robot Trajectory Planning with Nature-Inspired and
Hybrid Quantum Algorithms [0.0]
We solve robot trajectory planning problems at industry-relevant scales.
Our end-to-end solution integrates highly versatile random-key algorithms with model stacking and ensemble techniques.
We show how the latter can be integrated into our larger pipeline, providing a quantum-ready hybrid solution to the problem.
arXiv Detail & Related papers (2022-06-08T02:38:32Z) - A quantum-inspired tensor network method for constrained combinatorial
optimization problems [5.904219009974901]
We propose a quantum-inspired tensor-network-based algorithm for general locally constrained optimization problems.
Our algorithm constructs a Hamiltonian for the problem of interest, effectively mapping it to a quantum problem.
Our results show the effectiveness of this construction and potential applications.
arXiv Detail & Related papers (2022-03-29T05:44:07Z) - Simulation Paths for Quantum Circuit Simulation with Decision Diagrams [72.03286471602073]
We study the importance of the path that is chosen when simulating quantum circuits using decision diagrams.
We propose an open-source framework that allows to investigate dedicated simulation paths.
arXiv Detail & Related papers (2022-03-01T19:00:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.