論文の概要: Progressing Towards Responsible AI
- arxiv url: http://arxiv.org/abs/2008.07326v1
- Date: Tue, 11 Aug 2020 09:46:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-06 13:42:52.047599
- Title: Progressing Towards Responsible AI
- Title(参考訳): 責任あるaiへの進歩
- Authors: Teresa Scantamburlo, Atia Cort\'es, Marie Schacht
- Abstract要約: 学会と人工知能に関する天文台(OSAI)は、AI4EUプロジェクトから発展した。
OSAIは、AI(倫理的、法的、社会的、経済的、文化的)の幅広い問題に対するリフレクションを刺激することを目指している
- 参考スコア(独自算出の注目度): 2.191505742658975
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The field of Artificial Intelligence (AI) and, in particular, the Machine
Learning area, counts on a wide range of performance metrics and benchmark data
sets to assess the problem-solving effectiveness of its solutions. However, the
appearance of research centres, projects or institutions addressing AI
solutions from a multidisciplinary and multi-stakeholder perspective suggests a
new approach to assessment comprising ethical guidelines, reports or tools and
frameworks to help both academia and business to move towards a responsible
conceptualisation of AI. They all highlight the relevance of three key aspects:
(i) enhancing cooperation among the different stakeholders involved in the
design, deployment and use of AI; (ii) promoting multidisciplinary dialogue,
including different domains of expertise in this process; and (iii) fostering
public engagement to maximise a trusted relation with new technologies and
practitioners. In this paper, we introduce the Observatory on Society and
Artificial Intelligence (OSAI), an initiative grew out of the project AI4EU
aimed at stimulating reflection on a broad spectrum of issues of AI (ethical,
legal, social, economic and cultural). In particular, we describe our work in
progress around OSAI and suggest how this and similar initiatives can promote a
wider appraisal of progress in AI. This will give us the opportunity to present
our vision and our modus operandi to enhance the implementation of these three
fundamental dimensions.
- Abstract(参考訳): 人工知能(AI)の分野、特に機械学習分野は、そのソリューションの問題解決の有効性を評価するために、幅広いパフォーマンス指標とベンチマークデータセットを数えている。
しかし、多分野・多分野の視点からAIソリューションに対処する研究センター、プロジェクトまたは機関の出現は、学術とビジネスの両方がAIの責任ある概念化に向けて進むのに役立つ倫理的ガイドライン、レポート、ツール、フレームワークを含む評価への新たなアプローチを示唆している。
それらは3つの重要な側面の関連性を強調する。
(i)aiの設計、展開、使用に関わる様々な利害関係者の協力を強化すること。
(ii)この過程における専門知識の異なる分野を含む多分野の対話を促進すること。
(iii)新しい技術や実践者との信頼関係を最大化するために、公的な関与を育むこと。
本稿では,AIの幅広い課題(倫理的,法律的,社会的,経済的,文化的)の反映を促進することを目的とした,AI4EUプロジェクトから生まれた,社会と人工知能に関する天文台(OSAI)を紹介する。
特に、OSAIに関する我々の研究成果について述べ、これと類似の取り組みが、AIの進歩のより広範な評価を促進する方法について提案する。
これにより、これらの3つの基本次元の実装を強化するためのビジョンとモダスオペラディを提示する機会が得られます。
関連論文リスト
- Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - POLARIS: A framework to guide the development of Trustworthy AI systems [3.02243271391691]
ハイレベルなAI倫理原則と、AI専門家のための低レベルな具体的なプラクティスの間には、大きなギャップがある。
我々は、理論と実践のギャップを埋めるために設計された、信頼に値するAIのための新しい総合的なフレームワークを開発する。
私たちの目標は、AIプロフェッショナルが信頼できるAIの倫理的側面を確実にナビゲートできるようにすることです。
論文 参考訳(メタデータ) (2024-02-08T01:05:16Z) - Investigating Responsible AI for Scientific Research: An Empirical Study [4.597781832707524]
このような機関におけるResponsible AI(RAI)の推進は、AI設計と開発に倫理的配慮を統合することの重要性の高まりを強調している。
本稿では,AI設計・開発に内在する倫理的リスクに対する意識と準備性を評価することを目的とする。
その結果、倫理的、責任的、包括的AIに関する知識ギャップが明らかとなり、利用可能なAI倫理フレームワークに対する認識が制限された。
論文 参考訳(メタデータ) (2023-12-15T06:40:27Z) - A Vision for Operationalising Diversity and Inclusion in AI [5.4897262701261225]
本研究は,AIエコシステムにおける多様性と包摂性(D&I)の倫理的命令の運用を想定することを目的とする。
AI開発における重要な課題は、D&Iの原則を効果的に運用することである。
本稿では,ジェネレーティブAI(GenAI)を用いたペルソナシミュレーションを活用したツール開発のためのフレームワークの構想を提案する。
論文 参考訳(メタデータ) (2023-12-11T02:44:39Z) - Assessing AI Impact Assessments: A Classroom Study [14.768235460961876]
提案されたAIシステムへの影響を想像するための構造化プロセスを提供するツール群であるAIIA(Artificial Intelligence Impact Assessments)が、AIシステムを管理するための提案としてますます人気が高まっている。
近年、政府や民間団体の取り組みによりAIIAの多様なインスタンス化が提案されている。
我々は,AIの社会的・倫理的意味に焦点をあてた選択科目において,大規模な研究集約大学(R1)で授業研究を行う。
影響評価が参加者の潜在能力に対する認識に影響を及ぼすという予備的証拠を見いだす。
論文 参考訳(メタデータ) (2023-11-19T01:00:59Z) - The Participatory Turn in AI Design: Theoretical Foundations and the
Current State of Practice [64.29355073494125]
本稿は、既存の理論文献を合成して、AI設計における「参加的転換」を掘り下げることを目的としている。
我々は、最近発表された研究および12人のAI研究者および実践者に対する半構造化インタビューの分析に基づいて、AI設計における参加実践の現状に関する実証的な知見を述べる。
論文 参考訳(メタデータ) (2023-10-02T05:30:42Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
この学際的立場の論文は、AIにおける公平性と差別に関する様々な懸念を考察し、AI規制がそれらにどう対処するかについて議論する。
私たちはまず、法律、(AI)産業、社会技術、そして(道徳)哲学のレンズを通して、AIと公正性に注目し、様々な視点を提示します。
我々は、AI公正性の懸念の観点から、AI法の取り組みを成功に導くために、AIレギュレーションが果たす役割を特定し、提案する。
論文 参考訳(メタデータ) (2022-06-08T12:32:08Z) - Towards Implementing Responsible AI [22.514717870367623]
我々は,AIシステムの設計と開発において,ソフトウェア工学で使用されるプロセスに適応する4つの側面を提案する。
健全な発見は、AIシステム設計と開発、ソフトウェアエンジニアリングで使用されるプロセスの適応の4つの側面をカバーしている。
論文 参考訳(メタデータ) (2022-05-09T14:59:23Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
本稿では、既存の文献の参加と現在の実践の実証分析を通じて、AI設計における「参加的転換」を掘り下げることを目的としている。
本稿では,本論文の文献合成と実証研究に基づいて,AI設計への参加的アプローチを解析するための概念的枠組みを提案する。
論文 参考訳(メタデータ) (2021-11-01T17:57:04Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。