論文の概要: Fast Heavy Inner Product Identification Between Weights and Inputs in
Neural Network Training
- arxiv url: http://arxiv.org/abs/2311.11429v1
- Date: Sun, 19 Nov 2023 21:40:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-21 20:16:19.896969
- Title: Fast Heavy Inner Product Identification Between Weights and Inputs in
Neural Network Training
- Title(参考訳): ニューラルネットワークトレーニングにおける重みと入力間の高速重み付き内積同定
- Authors: Lianke Qin, Saayan Mitra, Zhao Song, Yuanyuan Yang, Tianyi Zhou
- Abstract要約: 2つの集合 $A の部分集合 -1,+1d$ と $B の部分集合 -1,+1d$ と $|A|=|B| = n$ が与えられる。
我々は$O(n2 omega / 3+ o(1))$時間で、$rhoを超える$k$内部積ペアを見つけるアルゴリズムを提供する。
- 参考スコア(独自算出の注目度): 31.08452714165316
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider a heavy inner product identification problem,
which generalizes the Light Bulb problem~(\cite{prr89}): Given two sets $A
\subset \{-1,+1\}^d$ and $B \subset \{-1,+1\}^d$ with $|A|=|B| = n$, if there
are exact $k$ pairs whose inner product passes a certain threshold, i.e.,
$\{(a_1, b_1), \cdots, (a_k, b_k)\} \subset A \times B$ such that $\forall i
\in [k], \langle a_i,b_i \rangle \geq \rho \cdot d$, for a threshold $\rho \in
(0,1)$, the goal is to identify those $k$ heavy inner products. We provide an
algorithm that runs in $O(n^{2 \omega / 3+ o(1)})$ time to find the $k$ inner
product pairs that surpass $\rho \cdot d$ threshold with high probability,
where $\omega$ is the current matrix multiplication exponent. By solving this
problem, our method speed up the training of neural networks with ReLU
activation function.
- Abstract(参考訳): In this paper, we consider a heavy inner product identification problem, which generalizes the Light Bulb problem~(\cite{prr89}): Given two sets $A \subset \{-1,+1\}^d$ and $B \subset \{-1,+1\}^d$ with $|A|=|B| = n$, if there are exact $k$ pairs whose inner product passes a certain threshold, i.e., $\{(a_1, b_1), \cdots, (a_k, b_k)\} \subset A \times B$ such that $\forall i \in [k], \langle a_i,b_i \rangle \geq \rho \cdot d$, for a threshold $\rho \in (0,1)$, the goal is to identify those $k$ heavy inner products.
我々は、$o(n^{2 \omega / 3+ o(1)})$で実行されるアルゴリズムを提供し、$\rho \cdot d$しきい値を超える$k$の内積ペアを高い確率で見つけ、$\omega$が現在の行列乗算指数である。
この問題を解決することで、ReLUアクティベーション機能を備えたニューラルネットワークのトレーニングを高速化する。
関連論文リスト
- The Communication Complexity of Approximating Matrix Rank [50.6867896228563]
この問題は通信複雑性のランダム化を$Omega(frac1kcdot n2log|mathbbF|)$とする。
アプリケーションとして、$k$パスを持つ任意のストリーミングアルゴリズムに対して、$Omega(frac1kcdot n2log|mathbbF|)$スペースローバウンドを得る。
論文 参考訳(メタデータ) (2024-10-26T06:21:42Z) - LevAttention: Time, Space, and Streaming Efficient Algorithm for Heavy Attentions [54.54897832889028]
任意の$K$に対して、$n$とは独立に「普遍集合」$Uサブセット[n]$が存在し、任意の$Q$と任意の行$i$に対して、大きな注目スコアが$A_i,j$ in row $i$ of $A$は全て$jin U$を持つことを示す。
我々は、視覚変換器のスキームの利点を実証的に示し、トレーニング中に我々の普遍的なセットを使用する新しいモデルのトレーニング方法を示した。
論文 参考訳(メタデータ) (2024-10-07T19:47:13Z) - A Fast Optimization View: Reformulating Single Layer Attention in LLM
Based on Tensor and SVM Trick, and Solving It in Matrix Multiplication Time [7.613259578185218]
我々は、一層注意ネットワーク目的関数 $L(X,Y) の証明可能な保証を提供することに注力する。
多層LCMネットワークでは、mathbbRn×d2$の行列$Bを層の出力と見なすことができる。
損失関数をトレーニングする反復アルゴリズムを$L(X,Y)$ up $epsilon$で、$widetildeO( (cal T_mathrmmat(n,d) + dで実行される。
論文 参考訳(メタデータ) (2023-09-14T04:23:40Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
本稿では, 2次行列分解(BMF)問題に対する効率的な$(1+varepsilon)$-approximationアルゴリズムを提案する。
目標は、低ランク因子の積として$mathbfA$を近似することである。
我々の手法はBMF問題の他の一般的な変種に一般化する。
論文 参考訳(メタデータ) (2023-06-02T18:55:27Z) - Randomized and Deterministic Attention Sparsification Algorithms for
Over-parameterized Feature Dimension [18.57735939471469]
我々は注意問題のスパシフィケーションを考慮する。
超大規模特徴量の場合、文の長さをほぼ線形に縮めることができる。
論文 参考訳(メタデータ) (2023-04-10T05:52:38Z) - Fast Attention Requires Bounded Entries [19.17278873525312]
内部製品注意計算はTransformer, GPT-1, BERT, GPT-2, GPT-3, ChatGPTなどの大規模言語モデルを訓練するための基本的なタスクである。
行列を暗黙的に$A$とすることで、より高速なアルゴリズムが可能かどうかを検討する。
このことは、入力行列がより小さいエントリを持つ場合、注意計算の方がはるかに効率的である、実際に観察された現象の理論的な説明を与える。
論文 参考訳(メタデータ) (2023-02-26T02:42:39Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
我々は、任意のSchatten-$p$ノルムの下で、低ランク近似のためのクリロフ部分空間に基づく反復法について研究する。
我々の主な成果は、$tildeO(k/sqrtepsilon)$ matrix-vector productのみを使用するアルゴリズムである。
論文 参考訳(メタデータ) (2022-02-10T16:10:41Z) - Learning a Latent Simplex in Input-Sparsity Time [58.30321592603066]
我々は、$AinmathbbRdtimes n$へのアクセスを考えると、潜入$k$-vertex simplex $KsubsetmathbbRdtimes n$を学習する問題を考える。
実行時間における$k$への依存は、トップ$k$特異値の質量が$a$であるという自然な仮定から不要であることを示す。
論文 参考訳(メタデータ) (2021-05-17T16:40:48Z) - Sets Clustering [25.358415142404752]
我々は、$O(logn)$集合のコア集合が常に存在することを証明し、$O(nlogn)$ timeで計算することができる。
このコアセットに非効率だが最適なアルゴリズムを適用することで、集合-k$-means問題に対する最初のPTAS(1+varepsilon$ approximation)を得ることができる。
オープンソースコードと文書分類および施設位置の実験結果も提供される。
論文 参考訳(メタデータ) (2020-03-09T13:30:30Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
有限和の有限ノイズ構造を利用して、大域オラクルモデルの下での一致する$O(n2)$-upper境界を導出する。
同様のアプローチを踏襲したSVRGの新規な適応法を提案し、これはオラクルと互換性があり、$tildeO(n2+nsqrtL/mu)log (1/epsilon)$と$O(nsqrtL/epsilon)$, for $mu>0$と$mu=0$の複雑さ境界を実現する。
論文 参考訳(メタデータ) (2020-02-09T03:39:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。