論文の概要: Designing Problem Sessions for Algorithmic Subjects to Boost Student
Confidence
- arxiv url: http://arxiv.org/abs/2311.12365v1
- Date: Tue, 21 Nov 2023 05:56:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 01:54:53.734031
- Title: Designing Problem Sessions for Algorithmic Subjects to Boost Student
Confidence
- Title(参考訳): 学生信頼を高めるためのアルゴリズム科目問題セッションの設計
- Authors: Andr\'e van Renssen
- Abstract要約: 我々は,学生の自信を高めるために,アルゴリズム的課題における問題セッションの構造をどう変えたかを説明する。
質問のスタイルを示す明瞭な分節を追加することで、生徒のエンゲージメントと自信が向上し、教師の指導活動を管理しやすくする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we describe how we changed the structure of problem sessions
in an algorithmic subject, in order to improve student confidence. The subject
in question is taught to very large cohorts of (around 900) students, though
our approach can be applied more broadly. We reflect on our experiences over a
number of years, including during the pandemic, and show that by adding clear
sectioning indicating the style of the questions and by including simple
warm-up questions, student engagement and confidence improves, while making the
teaching activities of our teaching assistants easier to manage.
- Abstract(参考訳): 本稿では,学生の自信を高めるために,アルゴリズム科目における問題セッションの構造を変更する方法について述べる。
問題の科目は(約900人の)学生の非常に大きなコホートに教えられるが、我々のアプローチはより広く適用できる。
我々は、パンデミックのときを含め、長年の経験を振り返り、質問のスタイルを示す明確なセクションを追加し、単純なウォームアップ質問、学生のエンゲージメントと自信の向上、そして教育アシスタントの指導活動を管理しやすくすることを示します。
関連論文リスト
- YODA: Teacher-Student Progressive Learning for Language Models [82.0172215948963]
本稿では,教師が指導するプログレッシブ・ラーニング・フレームワークであるYodaを紹介する。
モデルファインチューニングの有効性を向上させるために,教師の教育過程をエミュレートする。
実験の結果, YODAのデータによるLLaMA2のトレーニングにより, SFTは大幅に向上した。
論文 参考訳(メタデータ) (2024-01-28T14:32:15Z) - UKP-SQuARE: An Interactive Tool for Teaching Question Answering [61.93372227117229]
質問応答の指数的増加(QA)は、あらゆる自然言語処理(NLP)コースにおいて必須のトピックとなっている。
本稿では、QA教育のプラットフォームとしてUKP-SQuAREを紹介する。
学生は様々な視点から様々なQAモデルを実行、比較、分析することができる。
論文 参考訳(メタデータ) (2023-05-31T11:29:04Z) - Towards Mitigating ChatGPT's Negative Impact on Education: Optimizing
Question Design through Bloom's Taxonomy [0.0]
本稿では,Bloomの分類キーワードの最適セットを特定し,これらのツールが回答に自信を欠くような質問を生成するための進化的アプローチを提案する。
このアプローチの有効性は、オーストラリア、カンベラのニューサウスウェールズ大学で教えられているデータ構造・表現コースからの質問を用いたケーススタディによって評価される。
論文 参考訳(メタデータ) (2023-03-31T00:01:59Z) - Distance Teaching Experience of Campus-based Teachers at Times of
Pandemic Confinement [0.7056222499095848]
キャンパスベースのプログラムとコースはタイムリーに再設計されている。
学生の参加と積極的参加が問題となる。
本研究は,新しい学習環境における教師の体験とともに,これらの効果を分析したものである。
論文 参考訳(メタデータ) (2022-11-29T15:09:52Z) - Teachable Reinforcement Learning via Advice Distillation [161.43457947665073]
外部教師が提供した構造化アドバイスから学習する「教育可能な」意思決定システムに基づく対話型学習のための新しい指導パラダイムを提案する。
我々は、アドバイスから学ぶエージェントが、標準的な強化学習アルゴリズムよりも人的監督力の少ない新しいスキルを習得できることを示す。
論文 参考訳(メタデータ) (2022-03-19T03:22:57Z) - A literature survey on student feedback assessment tools and their usage
in sentiment analysis [0.0]
我々は,Kahoot!, Mentimeter, Padlet, pollingなどのクラス内フィードバック評価手法の有効性を評価する。
学生の質的なフィードバックコメントから明確な提案を抽出する感情分析モデルを提案する。
論文 参考訳(メタデータ) (2021-09-09T06:56:30Z) - ProtoTransformer: A Meta-Learning Approach to Providing Student Feedback [54.142719510638614]
本稿では,フィードバックを数発の分類として提供するという課題について考察する。
メタラーナーは、インストラクターによるいくつかの例から、新しいプログラミング質問に関する学生のコードにフィードバックを与えるように適応します。
本手法は,第1段階の大学が提供したプログラムコースにおいて,16,000名の学生試験ソリューションに対するフィードバックの提供に成功している。
論文 参考訳(メタデータ) (2021-07-23T22:41:28Z) - Learning on a Budget via Teacher Imitation [0.5185131234265025]
アクションアドバイザリング(Action Advising)は、教師-学生間のアクションの形でそのような知識を伝達する柔軟な方法を提供するフレームワークである。
我々は,教師の模倣によるアドバイス再利用の概念を拡張し,アドバイス収集とアドバイス活用の両問題に対処する統一的なアプローチを構築する。
論文 参考訳(メタデータ) (2021-04-17T04:15:00Z) - The Challenges of Assessing and Evaluating the Students at Distance [77.34726150561087]
新型コロナウイルス(COVID-19)の感染拡大が高等教育機関に強い影響を及ぼし、教室の授業は中止された。
本論文は、ポルトガルの高等教育機関がもたらす課題を探求し、評価モデルにもたらす課題を分析することを目的としている。
論文 参考訳(メタデータ) (2021-01-30T13:13:45Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
教師の音声記録から質問を自動的に検出するエンドツーエンドのニューラルネットワークフレームワークを構築している。
マルチタスク学習手法を取り入れることで,質問の種類によって意味的関係の理解を深めることが可能となる。
論文 参考訳(メタデータ) (2020-05-16T02:17:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。