論文の概要: PMANet: Malicious URL detection via post-trained language model guided multi-level feature attention network
- arxiv url: http://arxiv.org/abs/2311.12372v2
- Date: Fri, 21 Mar 2025 12:26:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 15:40:09.584386
- Title: PMANet: Malicious URL detection via post-trained language model guided multi-level feature attention network
- Title(参考訳): PMANet: 訓練後言語モデルによる多段階特徴注意ネットワークによる悪意のあるURL検出
- Authors: Ruitong Liu, Yanbin Wang, Haitao Xu, Zhan Qin, Fan Zhang, Yiwei Liu, Zheng Cao,
- Abstract要約: PMANetは,事前学習型言語モデル誘導型マルチレベル特徴注意ネットワークである。
PMANetは、マスク付き言語モデリング、ノイズの多い言語モデリング、ドメイン識別という、3つの自己組織化された目標を持つポストトレーニングプロセスを採用している。
小規模データ、クラス不均衡、敵攻撃を含む様々なシナリオの実験は、PMANetが最先端モデルよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 16.73322002436809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of malicious URLs has made their detection crucial for enhancing network security. While pre-trained language models offer promise, existing methods struggle with domain-specific adaptability, character-level information, and local-global encoding integration. To address these challenges, we propose PMANet, a pre-trained Language Model-Guided multi-level feature attention network. PMANet employs a post-training process with three self-supervised objectives: masked language modeling, noisy language modeling, and domain discrimination, effectively capturing subword and character-level information. It also includes a hierarchical representation module and a dynamic layer-wise attention mechanism for extracting features from low to high levels. Additionally, spatial pyramid pooling integrates local and global features. Experiments on diverse scenarios, including small-scale data, class imbalance, and adversarial attacks, demonstrate PMANet's superiority over state-of-the-art models, achieving a 0.9941 AUC and correctly detecting all 20 malicious URLs in a case study. Code and data are available at https://github.com/Alixyvtte/Malicious-URL-Detection-PMANet.
- Abstract(参考訳): 悪意のあるURLの拡散は、ネットワークセキュリティを強化するためにその検出を重要視している。
事前訓練された言語モデルは約束を提供するが、既存のメソッドはドメイン固有の適応性、文字レベル情報、ローカル-グローバルエンコーディングの統合に苦慮している。
これらの課題に対処するため,事前学習型言語モデル誘導型マルチレベル特徴注意ネットワークであるPMANetを提案する。
PMANetは、マスク付き言語モデリング、ノイズの多い言語モデリング、ドメイン識別という3つの自己組織化された目標を持つポストトレーニングプロセスを採用し、単語と文字レベルの情報を効果的にキャプチャする。
また、階層的な表現モジュールと、低レベルから高レベルまでの特徴を抽出する動的レイヤワイドアテンション機構も備えている。
さらに、空間ピラミッドプーリングは局所的特徴と大域的特徴を統合している。
小規模データ、クラス不均衡、敵攻撃を含む様々なシナリオの実験は、PMANetが最先端のモデルよりも優れていることを実証し、0.9941 AUCを達成し、ケーススタディで20の悪意のあるURLを正しく検出した。
コードとデータはhttps://github.com/Alixyvtte/Malicious-URL-Detection-PMANetで公開されている。
関連論文リスト
- Training Large Language Models for Advanced Typosquatting Detection [0.0]
Typosquattingは、ユーザーを騙し、マルウェアを配布し、フィッシング攻撃を行うためにURLをタイプする際のヒューマンエラーを利用するサイバー脅威である。
本研究では,大型言語モデル (LLM) を利用したタイポスクワット検出手法を提案する。
実験結果から, Phi-4 14Bモデルは他の試験モデルよりも優れており, 精度は98%, トレーニングサンプルは数千点であった。
論文 参考訳(メタデータ) (2025-03-28T13:16:27Z) - One for All: Multi-Domain Joint Training for Point Cloud Based 3D Object Detection [71.78795573911512]
textbfOneDet3Dは、異なるドメイン間での3D検出に対処する汎用的なワン・ツー・オール・モデルである。
本稿では、データ干渉問題に対処するため、ルーティング機構によって誘導される散乱とコンテキストにおけるドメイン認識を提案する。
完全なスパース構造とアンカーフリーヘッドは、さらに大きなスケールの差のある点雲を収容する。
論文 参考訳(メタデータ) (2024-11-03T14:21:56Z) - An Advanced Deep Learning Based Three-Stream Hybrid Model for Dynamic Hand Gesture Recognition [1.7985212575295124]
本稿では,RGBピクセルとスケルトンベースの特徴を組み合わせた3ストリームハイブリッドモデルを提案する。
手順では、拡張を含むデータセットを前処理し、回転、翻訳、独立系をスケールしました。
主に,画素ベースの深層学習機能とpos推定ベースの積み重ね深層学習機能を利用して,強力な特徴ベクトルを作成した。
論文 参考訳(メタデータ) (2024-08-15T09:05:00Z) - Boosting Cross-Domain Point Classification via Distilling Relational Priors from 2D Transformers [59.0181939916084]
従来の3Dネットワークは主に局所幾何学的詳細に焦点を当て、局所幾何学間の位相構造を無視する。
そこで本稿では,大規模画像上においてよく訓練されたトランスフォーマーから前駆体を抽出する,新しい先駆体蒸留法を提案する。
PointDA-10とSim-to-Realデータセットの実験は、提案手法が点クラウド分類におけるUDAの最先端性能を一貫して達成していることを検証する。
論文 参考訳(メタデータ) (2024-07-26T06:29:09Z) - StyDeSty: Min-Max Stylization and Destylization for Single Domain Generalization [85.18995948334592]
単一のドメインの一般化(単一DG)は、単一のトレーニングドメインからのみ見えないドメインに一般化可能な堅牢なモデルを学ぶことを目的としている。
最先端のアプローチは、主に新しいデータを合成するために、敵対的な摂動やスタイルの強化といったデータ拡張に頼っている。
データ拡張の過程で、ソースと擬似ドメインのアライメントを明示的に考慮したemphStyDeStyを提案する。
論文 参考訳(メタデータ) (2024-06-01T02:41:34Z) - URLBERT:A Contrastive and Adversarial Pre-trained Model for URL
Classification [10.562100395816595]
URLはWebコンテンツの理解と分類において重要な役割を果たす。
本稿では,URL分類や検出タスクに適用された最初の事前学習型表現学習モデルであるURLBERTを紹介する。
論文 参考訳(メタデータ) (2024-02-18T07:51:20Z) - PyraTrans: Attention-Enriched Pyramid Transformer for Malicious URL Detection [9.873643699502853]
PyraTransは、事前訓練されたトランスフォーマーとピラミッド特徴学習を統合して、悪意のあるURLを検出する新しい方法である。
いくつかの挑戦的な実験シナリオにおいて、提案手法は精度、一般化、堅牢性を著しく改善した。
論文 参考訳(メタデータ) (2023-12-01T11:27:00Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - Genetic Algorithm-Based Dynamic Backdoor Attack on Federated
Learning-Based Network Traffic Classification [1.1887808102491482]
本稿では,GABAttackを提案する。GABAttackは,ネットワークトラフィック分類のためのフェデレーション学習に対する新しい遺伝的アルゴリズムに基づくバックドア攻撃である。
この研究は、ネットワークセキュリティの専門家や実践者がこのような攻撃に対して堅牢な防御策を開発するための警告となる。
論文 参考訳(メタデータ) (2023-09-27T14:02:02Z) - M$^3$Net: Multilevel, Mixed and Multistage Attention Network for Salient
Object Detection [22.60675416709486]
M$3$Netは、Salient Object Detectionのためのアテンションネットワークである。
マルチレベル特徴間の相互作用を実現するためのクロスアテンションアプローチ。
Mixed Attention Blockは、グローバルレベルとローカルレベルの両方でコンテキストをモデリングすることを目的としている。
集約された特徴をステージごとに最適化するためのマルチレベル監視戦略。
論文 参考訳(メタデータ) (2023-09-15T12:46:14Z) - Grounded Decoding: Guiding Text Generation with Grounded Models for
Embodied Agents [111.15288256221764]
グラウンデッドデコーディングプロジェクトは、両方のモデルの知識を活用することで、ロボット環境で複雑な長期タスクを解決することを目的としている。
我々はこれを確率的フィルタリングに類似した問題として、言語モデルの下で高い確率を持つシーケンスをデコードし、基底モデル対象のセットで高い確率を示す。
本研究では,3つのシミュレーション領域と実世界の領域にまたがって,そのような基底モデルがどのように得られるのかを実証し,両モデルの知識を活用して,ロボット環境での複雑な長期的タスクを解くことができることを示す。
論文 参考訳(メタデータ) (2023-03-01T22:58:50Z) - Federated Zero-Shot Learning for Visual Recognition [55.65879596326147]
本稿では,Federated Zero-Shot Learning FedZSLフレームワークを提案する。
FedZSLは、エッジデバイス上の分散データから中心的なモデルを学ぶ。
FedZSLの有効性と堅牢性は、3つのゼロショットベンチマークデータセットで実施された広範な実験によって実証された。
論文 参考訳(メタデータ) (2022-09-05T14:49:34Z) - DFC: Deep Feature Consistency for Robust Point Cloud Registration [0.4724825031148411]
複雑なアライメントシーンのための学習に基づくアライメントネットワークを提案する。
我々は,3DMatchデータセットとKITTIオドメトリデータセットに対するアプローチを検証する。
論文 参考訳(メタデータ) (2021-11-15T08:27:21Z) - Unsupervised Paraphrasing with Pretrained Language Models [85.03373221588707]
教師なし環境で,事前学習した言語モデルを用いて高品質なパラフレーズを生成する訓練パイプラインを提案する。
提案手法は,タスク適応,自己スーパービジョン,動的ブロッキング(Dynamic Blocking)という新しい復号アルゴリズムから構成される。
提案手法は,Quora Question PairとParaNMTの両方のデータセット上で,最先端の性能を達成できることを示す。
論文 参考訳(メタデータ) (2020-10-24T11:55:28Z) - InfoBERT: Improving Robustness of Language Models from An Information
Theoretic Perspective [84.78604733927887]
BERTのような大規模言語モデルは、幅広いNLPタスクで最先端のパフォーマンスを実現している。
近年の研究では、このようなBERTベースのモデルが、テキストの敵対的攻撃の脅威に直面していることが示されている。
本稿では,事前学習した言語モデルの堅牢な微調整のための新しい学習フレームワークであるInfoBERTを提案する。
論文 参考訳(メタデータ) (2020-10-05T20:49:26Z) - Learning One Class Representations for Face Presentation Attack
Detection using Multi-channel Convolutional Neural Networks [7.665392786787577]
プレゼンテーションアタック検出(PAD)メソッドは、目に見えないアタックを一般化するのに失敗することが多い。
マルチチャネル畳み込みニューラルネットワーク(MCCNN)で学習する一クラス分類器を用いたPADのための新しいフレームワークを提案する。
新たな損失関数が導入されたため、ネットワークは攻撃の表現から遠ざかって、ボナフィドクラスのコンパクトな埋め込みを学習せざるを得なくなった。
提案フレームワークは,ボナフィドおよび(既知の)攻撃クラスから堅牢なPADシステムを学習するための新しいアプローチを導入する。
論文 参考訳(メタデータ) (2020-07-22T14:19:33Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z) - Bifurcated backbone strategy for RGB-D salient object detection [168.19708737906618]
我々は、RGB-Dの高次物体検出に固有のマルチモーダル・マルチレベルの性質を活用して、新しいカスケードリファインメントネットワークを考案する。
アーキテクチャは Bifurcated Backbone Strategy Network (BBS-Net) と呼ばれ、シンプルで効率的でバックボーンに依存しない。
論文 参考訳(メタデータ) (2020-07-06T13:01:30Z) - Crowd Counting via Hierarchical Scale Recalibration Network [61.09833400167511]
本稿では,群集カウントの課題に取り組むために,階層型大規模校正ネットワーク(HSRNet)を提案する。
HSRNetは、リッチなコンテキスト依存をモデル化し、複数のスケール関連情報を再検討する。
提案手法は,様々なノイズを選択的に無視し,適切な群集スケールに自動的に焦点を合わせることができる。
論文 参考訳(メタデータ) (2020-03-07T10:06:47Z) - Cross-layer Feature Pyramid Network for Salient Object Detection [102.20031050972429]
本稿では,有能な物体検出における進行的融合を改善するために,新しいクロス層特徴ピラミッドネットワークを提案する。
レイヤごとの分散機能は、他のすべてのレイヤからセマンティクスと健全な詳細の両方を同時に所有し、重要な情報の損失を減らします。
論文 参考訳(メタデータ) (2020-02-25T14:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。