論文の概要: Neural Network Pruning by Gradient Descent
- arxiv url: http://arxiv.org/abs/2311.12526v1
- Date: Tue, 21 Nov 2023 11:12:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 01:07:15.779664
- Title: Neural Network Pruning by Gradient Descent
- Title(参考訳): 勾配降下によるニューラルネットワークのプルーニング
- Authors: Zhang Zhang, Ruyi Tao, Jiang Zhang
- Abstract要約: 我々は,Gumbel-Softmaxテクニックを取り入れた,新しい,かつ簡単なニューラルネットワークプルーニングフレームワークを提案する。
ネットワークパラメータの0.15%しか持たないMNISTデータセット上で、高い精度を維持しながら、例外的な圧縮能力を実証する。
我々は,ディープラーニングプルーニングと解釈可能な機械学習システム構築のための,有望な新たな道を開くと信じている。
- 参考スコア(独自算出の注目度): 7.427858344638741
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid increase in the parameters of deep learning models has led to
significant costs, challenging computational efficiency and model
interpretability. In this paper, we introduce a novel and straightforward
neural network pruning framework that incorporates the Gumbel-Softmax
technique. This framework enables the simultaneous optimization of a network's
weights and topology in an end-to-end process using stochastic gradient
descent. Empirical results demonstrate its exceptional compression capability,
maintaining high accuracy on the MNIST dataset with only 0.15\% of the original
network parameters. Moreover, our framework enhances neural network
interpretability, not only by allowing easy extraction of feature importance
directly from the pruned network but also by enabling visualization of feature
symmetry and the pathways of information propagation from features to outcomes.
Although the pruning strategy is learned through deep learning, it is
surprisingly intuitive and understandable, focusing on selecting key
representative features and exploiting data patterns to achieve extreme sparse
pruning. We believe our method opens a promising new avenue for deep learning
pruning and the creation of interpretable machine learning systems.
- Abstract(参考訳): ディープラーニングモデルのパラメータの急速な増加は、かなりのコストと計算効率の挑戦、モデルの解釈可能性を生み出した。
本稿では,gumbel-softmax手法を応用した,新規で分かりやすいニューラルネットワークプルーニングフレームワークを提案する。
このフレームワークは、確率的勾配降下を用いたエンドツーエンドプロセスにおけるネットワークの重みとトポロジーの同時最適化を可能にする。
実験的な結果は、その例外的な圧縮能力を示し、元のネットワークパラメータの0.15倍の精度でMNISTデータセットを高い精度で維持する。
さらに,本フレームワークは,プルーニングネットワークから直接特徴重要度を抽出するだけでなく,特徴対称性の可視化や特徴から結果への情報伝達の経路を可視化することで,ニューラルネットワークの解釈可能性を向上させる。
プルーニング戦略はディープラーニングを通じて学習されるが、重要な特徴の選択とデータパターンの活用に重点を置いて、驚くほど直感的で理解しやすい。
我々は,ディープラーニングプルーニングと解釈可能な機械学習システム構築のための,有望な新たな道を開くと信じている。
関連論文リスト
- Deep Learning Through A Telescoping Lens: A Simple Model Provides Empirical Insights On Grokking, Gradient Boosting & Beyond [61.18736646013446]
その驚くべき振る舞いをより深く理解するために、トレーニングされたニューラルネットワークの単純かつ正確なモデルの有用性について検討する。
3つのケーススタディで、様々な顕著な現象に関する新しい経験的洞察を導き出すためにどのように適用できるかを説明します。
論文 参考訳(メタデータ) (2024-10-31T22:54:34Z) - Robust Neural Pruning with Gradient Sampling Optimization for Residual Neural Networks [0.0]
この研究は、勾配サンプリング最適化技術、特にStochGradAdamをニューラルネットワークのプルーニングプロセスに統合するパイオニアとなる。
我々の主な目的は、資源制約のあるシナリオにおいて重要なプルーニングニューラルネットワークモデルの精度を維持するという重要な課題に対処することである。
論文 参考訳(メタデータ) (2023-12-26T12:19:22Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Sensitivity-Aware Mixed-Precision Quantization and Width Optimization of Deep Neural Networks Through Cluster-Based Tree-Structured Parzen Estimation [4.748931281307333]
本稿では,個々のニューラルネットワーク層に対して最適なビット幅と層幅を自動的に選択する革新的な探索機構を提案する。
これにより、ディープニューラルネットワークの効率が著しく向上する。
論文 参考訳(メタデータ) (2023-08-12T00:16:51Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Optimization-Based Separations for Neural Networks [57.875347246373956]
本研究では,2層のシグモダルアクティベーションを持つディープ2ニューラルネットワークを用いて,ボールインジケータ関数を効率よく学習できることを示す。
これは最適化に基づく最初の分離結果であり、より強力なアーキテクチャの近似の利点は、実際に確実に現れる。
論文 参考訳(メタデータ) (2021-12-04T18:07:47Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI)アルゴリズムは、浅いフルコネクテッドニューラルネットワークのバックプロパゲーションに対する実行可能でスケーラブルな代替手段であることが示された。
従来のディープニューラルネットワークアーキテクチャをトレーニングするために、TAGIがバックプロパゲーションのパフォーマンスとどのように一致するか、または上回るかを実証しています。
論文 参考訳(メタデータ) (2021-03-09T14:51:34Z) - Differentiable Sparsification for Deep Neural Networks [0.0]
本稿では,ディープニューラルネットワークのための完全微分可能なスペーシフィケーション手法を提案する。
提案手法は,ネットワークのスパース化構造と重み付けの両方をエンドツーエンドに学習することができる。
私たちの知る限りでは、これが最初の完全に差別化可能なスパーシフィケーション手法である。
論文 参考訳(メタデータ) (2019-10-08T03:57:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。