論文の概要: Variational Elliptical Processes
- arxiv url: http://arxiv.org/abs/2311.12566v1
- Date: Tue, 21 Nov 2023 12:26:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-23 00:39:02.693252
- Title: Variational Elliptical Processes
- Title(参考訳): 変分楕円過程
- Authors: Maria B{\aa}nkestad, Jens Sj\"olund, Jalil Taghia, Thomas B. Sch\"oon
- Abstract要約: 本稿では,非パラメトリック確率モデルの一群である楕円過程と,学生の後続過程について述べる。
我々はこの混合分布をスプライン正規化フローとしてパラメータ化し、変分推論を用いて訓練する。
提案した変分後部の形状は,大規模な問題に適用可能なスパース変分楕円過程を可能にする。
- 参考スコア(独自算出の注目度): 1.5703073293718952
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present elliptical processes, a family of non-parametric probabilistic
models that subsume Gaussian processes and Student's t processes. This
generalization includes a range of new heavy-tailed behaviors while retaining
computational tractability. Elliptical processes are based on a representation
of elliptical distributions as a continuous mixture of Gaussian distributions.
We parameterize this mixture distribution as a spline normalizing flow, which
we train using variational inference. The proposed form of the variational
posterior enables a sparse variational elliptical process applicable to
large-scale problems. We highlight advantages compared to Gaussian processes
through regression and classification experiments. Elliptical processes can
supersede Gaussian processes in several settings, including cases where the
likelihood is non-Gaussian or when accurate tail modeling is essential.
- Abstract(参考訳): 我々は,ガウス過程と学生のt過程を包含する非パラメトリック確率モデル群である楕円過程を提案する。
この一般化は、計算的トラクタビリティを維持しながら、様々な新しい重み付き挙動を含む。
楕円過程は、ガウス分布の連続混合として楕円分布の表現に基づいている。
この混合分布をスプライン正規化フローとしてパラメータ化し,変分推論を用いて学習する。
提案した変分後部の形状は,大規模な問題に適用可能なスパース変分楕円過程を可能にする。
回帰および分類実験によるガウス過程と比較して優位性を強調した。
楕円過程は、確率がガウス的でない場合や正確なテールモデリングが必要となる場合など、いくつかの設定でガウス過程に取って代わることができる。
関連論文リスト
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
我々は,本質的なガウス過程が実際により優れた性能を発揮することを示す。
我々の研究は、データ効率の異なるレベルを区別するために、よりきめ細かい分析が必要であることを示している。
論文 参考訳(メタデータ) (2023-09-19T20:30:58Z) - A Heavy-Tailed Algebra for Probabilistic Programming [53.32246823168763]
本稿では,確率変数の尾を解析するための体系的アプローチを提案する。
本稿では,確率型プログラミング言語コンパイラの静的解析(サンプル作成前)において,この手法をどのように利用できるかを示す。
実験結果から,重み付き代数を利用する推論アルゴリズムは,多数の密度モデリングおよび変分推論タスクにおいて優れた性能が得られることを確認した。
論文 参考訳(メタデータ) (2023-06-15T16:37:36Z) - Variational Gaussian Process Diffusion Processes [17.716059928867345]
拡散過程(英: Diffusion process)は、微分方程式(SDE)のクラスであり、表現的モデルの豊富な族を提供する。
非線型拡散過程が先行する潜在過程を持つ生成モデルの下での確率的推論と学習は難解な問題である。
本研究では, 線形拡散過程として後続過程を近似し, アプローチの病理を指摘する。
論文 参考訳(メタデータ) (2023-06-03T09:43:59Z) - Gaussian Processes and Statistical Decision-making in Non-Euclidean
Spaces [96.53463532832939]
我々はガウス過程の適用性を高める技術を開発した。
この観点から構築した効率的な近似を幅広く導入する。
非ユークリッド空間上のガウス過程モデルの集合を開発する。
論文 参考訳(メタデータ) (2022-02-22T01:42:57Z) - Natural Gradient Variational Inference with Gaussian Mixture Models [1.7948767405202701]
変分推論 (VI) 法は、最適化を用いて単純な家族から選択される分布と後部を近似する。
この研究の主な貢献は、自然勾配の変分推論とガウスの混合に対する更新規則の集合である。
論文 参考訳(メタデータ) (2021-11-15T20:04:32Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
ガウス過程後部をシミュレーションするための従来のアプローチでは、有限個の入力位置のプロセス値の限界分布からサンプルを抽出する。
この分布中心の特徴づけは、所望のランダムベクトルのサイズで3次スケールする生成戦略をもたらす。
条件付けのこのパスワイズ解釈が、ガウス過程の後部を効率的にサンプリングするのに役立てる近似の一般族をいかに生み出すかを示す。
論文 参考訳(メタデータ) (2020-11-08T17:09:37Z) - Recyclable Gaussian Processes [0.0]
ガウス過程に対する独立な変分近似をリサイクルするための新しい枠組みを提案する。
主な貢献は、ガウス過程の辞書が与えられた変分アンサンブルの構築である。
私たちのフレームワークは回帰、分類、異種タスクを可能にします。
論文 参考訳(メタデータ) (2020-10-06T09:01:55Z) - The Elliptical Processes: a Family of Fat-tailed Stochastic Processes [1.2043574473965317]
楕円過程 - ガウス過程と学生-t過程を仮定する非パラメトリック確率モデルの族を示す。
この一般化には、計算的トラクタビリティを保たない新しい脂肪尾挙動を含む。
論文 参考訳(メタデータ) (2020-03-13T08:36:39Z) - Efficiently Sampling Functions from Gaussian Process Posteriors [76.94808614373609]
高速後部サンプリングのための簡易かつ汎用的なアプローチを提案する。
分離されたサンプルパスがガウス過程の後部を通常のコストのごく一部で正確に表現する方法を実証する。
論文 参考訳(メタデータ) (2020-02-21T14:03:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。