Towards a more inductive world for drug repurposing approaches
- URL: http://arxiv.org/abs/2311.12670v2
- Date: Fri, 24 Nov 2023 10:49:50 GMT
- Title: Towards a more inductive world for drug repurposing approaches
- Authors: Jesus de la Fuente, Guillermo Serrano, Ux\'ia Veleiro, Mikel Casals,
Laura Vera, Marija Pizurica, Antonio Pineda-Lucena, Idoia Ochoa, Silve
Vicent, Olivier Gevaert, and Mikel Hernaez
- Abstract summary: Drug-target interaction (DTI) prediction is a challenging, albeit essential task in drug repurposing.
We show that DTI prediction methods based on transductive models lack generalization and lead to inflated performance.
We propose a novel biologically-driven strategy for negative edge subsampling and show through in vitro validation that newly discovered interactions are indeed true.
- Score: 0.545520830707066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Drug-target interaction (DTI) prediction is a challenging, albeit essential
task in drug repurposing. Learning on graph models have drawn special attention
as they can significantly reduce drug repurposing costs and time commitment.
However, many current approaches require high-demanding additional information
besides DTIs that complicates their evaluation process and usability.
Additionally, structural differences in the learning architecture of current
models hinder their fair benchmarking. In this work, we first perform an
in-depth evaluation of current DTI datasets and prediction models through a
robust benchmarking process, and show that DTI prediction methods based on
transductive models lack generalization and lead to inflated performance when
evaluated as previously done in the literature, hence not being suited for drug
repurposing approaches. We then propose a novel biologically-driven strategy
for negative edge subsampling and show through in vitro validation that newly
discovered interactions are indeed true. We envision this work as the
underpinning for future fair benchmarking and robust model design. All
generated resources and tools are publicly available as a python package.
Related papers
- Unveiling the Flaws: A Critical Analysis of Initialization Effect on Time Series Anomaly Detection [6.923007095578702]
Deep learning for time-series anomaly detection (TSAD) has gained significant attention over the past decade.
Recent studies have cast doubt on these models, attributing their results to flawed evaluation techniques.
This paper provides a critical analysis of the effects on TSAD model performance.
arXiv Detail & Related papers (2024-08-13T04:08:17Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Rethinking Model Prototyping through the MedMNIST+ Dataset Collection [0.11999555634662634]
This work presents a benchmark for the MedMNIST+ database to diversify the evaluation landscape.
We conduct a thorough analysis of common convolutional neural networks (CNNs) and Transformer-based architectures, for medical image classification.
Our findings suggest that computationally efficient training schemes and modern foundation models hold promise in bridging the gap between expensive end-to-end training and more resource-refined approaches.
arXiv Detail & Related papers (2024-04-24T10:19:25Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
Key aspect of drug discovery involves identifying novel drug-target (DT) interactions.
Protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity.
We propose novel enhancements to enhance their performance.
arXiv Detail & Related papers (2023-10-06T05:00:25Z) - Drug Discovery under Covariate Shift with Domain-Informed Prior
Distributions over Functions [30.305418761024143]
Real-world drug discovery tasks are often characterized by a scarcity of labeled data and a significant range of data.
We present a principled way to encode explicit prior knowledge of the data-generating process into a prior distribution.
We demonstrate that using integrate Q-SAVI to contextualize prior knowledgelike chemical space into the modeling process affords substantial accuracy and calibration.
arXiv Detail & Related papers (2023-07-14T05:01:10Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.