Enhancing Drug-Target Interaction Prediction through Transfer Learning from Activity Cliff Prediction Tasks
- URL: http://arxiv.org/abs/2412.19815v1
- Date: Wed, 11 Dec 2024 18:56:11 GMT
- Title: Enhancing Drug-Target Interaction Prediction through Transfer Learning from Activity Cliff Prediction Tasks
- Authors: Regina Ibragimova, Dimitrios Iliadis, Willem Waegeman,
- Abstract summary: This study presents a novel approach that applies transfer learning from AC prediction to enhance DTI prediction.
Unlike previous studies, which treat AC and DTI predictions as separate problems, this work establishes a unified framework to address both data scarcity and prediction challenges in drug discovery.
- Score: 1.6112718683989882
- License:
- Abstract: Recently, machine learning (ML) has gained popularity in the early stages of drug discovery. This trend is unsurprising given the increasing volume of relevant experimental data and the continuous improvement of ML algorithms. However, conventional models, which rely on the principle of molecular similarity, often fail to capture the complexities of chemical interactions, particularly those involving activity cliffs (ACs) - compounds that are structurally similar but exhibit evidently different activity behaviors. In this work, we address two distinct yet related tasks: (1) activity cliff (AC) prediction and (2) drug-target interaction (DTI) prediction. Leveraging insights gained from the AC prediction task, we aim to improve the performance of DTI prediction through transfer learning. A universal model was developed for AC prediction, capable of identifying activity cliffs across diverse targets. Insights from this model were then incorporated into DTI prediction, enabling better handling of challenging cases involving ACs while maintaining similar overall performance. This approach establishes a strong foundation for integrating AC awareness into predictive models for drug discovery. Scientific Contribution This study presents a novel approach that applies transfer learning from AC prediction to enhance DTI prediction, addressing limitations of traditional similarity-based models. By introducing AC-awareness, we improve DTI model performance in structurally complex regions, demonstrating the benefits of integrating compound-specific and protein-contextual information. Unlike previous studies, which treat AC and DTI predictions as separate problems, this work establishes a unified framework to address both data scarcity and prediction challenges in drug discovery.
Related papers
- MIN: Multi-channel Interaction Network for Drug-Target Interaction with Protein Distillation [64.4838301776267]
Multi-channel Interaction Network (MIN) is a novel framework designed to predict drug-target interaction (DTI)
MIN incorporates a representation learning module and a multi-channel interaction module.
MIN is not only a potent tool for DTI prediction but also offers fresh insights into the prediction of protein binding sites.
arXiv Detail & Related papers (2024-11-23T05:38:36Z) - Enhancing Interaction Modeling with Agent Selection and Physical Coefficient for Trajectory Prediction [1.6954753390775528]
We present ASPILin, which manually selects interacting agents and calculates their correlations instead of attention scores.
Remarkably, experiments conducted on the INTERACTION, highD, and CitySim datasets demonstrate that our method is efficient and straightforward.
arXiv Detail & Related papers (2024-05-21T18:45:18Z) - Towards a more inductive world for drug repurposing approaches [0.545520830707066]
Drug-target interaction (DTI) prediction is a challenging, albeit essential task in drug repurposing.
We show that DTI prediction methods based on transductive models lack generalization and lead to inflated performance.
We propose a novel biologically-driven strategy for negative edge subsampling and show through in vitro validation that newly discovered interactions are indeed true.
arXiv Detail & Related papers (2023-11-21T15:28:44Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
Key aspect of drug discovery involves identifying novel drug-target (DT) interactions.
Protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity.
We propose novel enhancements to enhance their performance.
arXiv Detail & Related papers (2023-10-06T05:00:25Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - ACP++: Action Co-occurrence Priors for Human-Object Interaction
Detection [102.9428507180728]
A common problem in the task of human-object interaction (HOI) detection is that numerous HOI classes have only a small number of labeled examples.
We observe that there exist natural correlations and anti-correlations among human-object interactions.
We present techniques to learn these priors and leverage them for more effective training, especially on rare classes.
arXiv Detail & Related papers (2021-09-09T06:02:50Z) - Toward Robust Drug-Target Interaction Prediction via Ensemble Modeling
and Transfer Learning [0.0]
We introduce an ensemble of deep learning models (EnsembleDLM) for robust DTI prediction.
EnsembleDLM only uses the sequence information of chemical compounds and proteins, and it aggregates the predictions from multiple deep neural networks.
It achieves state-of-the-art performance in Davis and KIBA datasets.
arXiv Detail & Related papers (2021-07-02T04:00:03Z) - Drug-Target Interaction Prediction via an Ensemble of Weighted Nearest
Neighbors with Interaction Recovery [5.8683934849211745]
Drug-target interactions are predicted via structure-based drug similarities and sequence-based target protein similarities.
Most existing similarity-based methods follow the transductive setting.
A large amount of missing interactions in current DTI datasets hinders most DTI prediction methods.
We propose a new method denoted as Weighted k Nearest Neighbor with Interaction Recovery (WkNNIR)
arXiv Detail & Related papers (2020-12-22T19:54:18Z) - Detecting Human-Object Interactions with Action Co-occurrence Priors [108.31956827512376]
A common problem in human-object interaction (HOI) detection task is that numerous HOI classes have only a small number of labeled examples.
We observe that there exist natural correlations and anti-correlations among human-object interactions.
We present techniques to learn these priors and leverage them for more effective training, especially in rare classes.
arXiv Detail & Related papers (2020-07-17T02:47:45Z) - MolTrans: Molecular Interaction Transformer for Drug Target Interaction
Prediction [68.5766865583049]
Drug target interaction (DTI) prediction is a foundational task for in silico drug discovery.
Recent years have witnessed promising progress for deep learning in DTI predictions.
We propose a Molecular Interaction Transformer (TransMol) to address these limitations.
arXiv Detail & Related papers (2020-04-23T18:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.