論文の概要: Alpha Zero for Physics: Application of Symbolic Regression with Alpha
Zero to find the analytical methods in physics
- arxiv url: http://arxiv.org/abs/2311.12713v2
- Date: Mon, 4 Dec 2023 15:01:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-05 21:11:31.259413
- Title: Alpha Zero for Physics: Application of Symbolic Regression with Alpha
Zero to find the analytical methods in physics
- Title(参考訳): 物理学におけるAlpha Zero:Alpha Zeroを用いたシンボリック回帰の物理解析への応用
- Authors: Yoshihiro Michishita
- Abstract要約: 我々は,Alpha Zeroアルゴリズムを用いた記号回帰を用いた物理解析手法の開発フレームワークを提案する。
実演として、AZfPはFloquetシステムの高周波展開を導出できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning with neural networks is now becoming a more and more
powerful tool for various tasks, such as natural language processing, image
recognition, winning the game, and even for the issues of physics. Although
there are many studies on the application of machine learning to numerical
calculation and assistance of experiments, the methods of applying machine
learning to find the analytical method are poorly studied. In this paper, we
propose the frameworks of developing analytical methods in physics by using the
symbolic regression with the Alpha Zero algorithm, that is Alpha Zero for
physics (AZfP). As a demonstration, we show that AZfP can derive the
high-frequency expansion in the Floquet systems. AZfP may have the possibility
of developing a new theoretical framework in physics.
- Abstract(参考訳): ニューラルネットワークによる機械学習は、自然言語処理、画像認識、ゲーム勝利、さらには物理学の問題など、さまざまなタスクのための、ますます強力なツールになりつつある。
機械学習を数値計算や実験の支援に応用する研究は数多く存在するが、解析方法を見つけるために機械学習を適用する方法はあまり研究されていない。
本稿では、アルファゼロアルゴリズム(α zero for physics (azfp))を用いた記号回帰を用いて、物理学における解析手法を開発する枠組みを提案する。
実演として、AZfPはFloquetシステムの高周波展開を導出できることを示す。
AZfPは物理学の新しい理論フレームワークを開発する可能性がある。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Latent Intuitive Physics: Learning to Transfer Hidden Physics from A 3D Video [58.043569985784806]
本稿では,物理シミュレーションのための伝達学習フレームワークである潜在直観物理学を紹介する。
単一の3Dビデオから流体の隠れた性質を推測し、新しいシーンで観察された流体をシミュレートすることができる。
我々は,本モデルの有効性を3つの方法で検証する: (i) 学習されたビジュアルワールド物理を用いた新しいシーンシミュレーション, (ii) 観測された流体力学の将来予測, (iii) 教師付き粒子シミュレーション。
論文 参考訳(メタデータ) (2024-06-18T16:37:44Z) - Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
我々は、科学における機械学習応用のためのニューラルネットワーク設計であるメカニスティックニューラルネットワークを提案する。
新しいメカニスティックブロックを標準アーキテクチャに組み込んで、微分方程式を表現として明示的に学習する。
我々のアプローチの中心は、線形プログラムを解くために線形ODEを解く技術に着想を得た、新しい線形計画解法(NeuRLP)である。
論文 参考訳(メタデータ) (2024-02-20T15:23:24Z) - Deep symbolic regression for physics guided by units constraints: toward
the automated discovery of physical laws [0.0]
シンボリック回帰(英: Symbolic Regression)は、データに適合する解析式を自動検索するアルゴリズムの研究である。
解析記号表現を物理データから復元するフレームワークである$Phi$-SOを提案する。
論文 参考訳(メタデータ) (2023-03-06T16:47:59Z) - Machine-learning-assisted construction of appropriate rotating frame [0.0]
本稿では,機械学習を用いた解析手法を提案する。
我々は、リカレントニューラルネットワークがFloquet-Magnus拡張を導出できることを実証する。
また,本手法は,他のシステムにおける理論的枠組みの発見にも適用可能であると論じる。
論文 参考訳(メタデータ) (2022-11-28T12:49:47Z) - The Physics of Machine Learning: An Intuitive Introduction for the
Physical Scientist [0.0]
この記事では、機械学習アルゴリズムに関する深い洞察を得たいと願う物理科学者を対象としている。
まず、エネルギーベースの2つの機械学習アルゴリズム、ホップフィールドネットワークとボルツマンマシンのレビューと、Isingモデルとの関係について述べる。
次に、フィードフォワードニューラルネットワーク、畳み込みニューラルネットワーク、オートエンコーダを含む、さらに"実践的"な機械学習アーキテクチャを掘り下げます。
論文 参考訳(メタデータ) (2021-11-27T15:12:42Z) - Physically Explainable CNN for SAR Image Classification [59.63879146724284]
本稿では,SAR画像分類のための新しい物理誘導型ニューラルネットワークを提案する。
提案フレームワークは,(1)既存の説明可能なモデルを用いて物理誘導信号を生成すること,(2)物理誘導ネットワークを用いた物理認識特徴を学習すること,(3)従来の分類深層学習モデルに適応的に物理認識特徴を注入すること,の3つの部分からなる。
実験の結果,提案手法はデータ駆動型CNNと比較して,分類性能を大幅に向上することがわかった。
論文 参考訳(メタデータ) (2021-10-27T03:30:18Z) - An extended physics informed neural network for preliminary analysis of
parametric optimal control problems [0.0]
本研究では、パラメトリック偏微分方程式に対する教師付き学習戦略の拡張を提案する。
我々の主な目標は、パラメトリケート現象を短時間でシミュレートする物理情報学習パラダイムを提供することです。
論文 参考訳(メタデータ) (2021-10-26T09:39:05Z) - Hard Encoding of Physics for Learning Spatiotemporal Dynamics [8.546520029145853]
既知の物理知識を強制的にエンコードして,データ駆動的な学習を容易にするディープラーニングアーキテクチャを提案する。
物理学の強制符号化メカニズムは、ペナルティに基づく物理学による学習と根本的に異なるが、ネットワークが与えられた物理学に厳密に従うことを保証する。
論文 参考訳(メタデータ) (2021-05-02T21:40:39Z) - PlasticineLab: A Soft-Body Manipulation Benchmark with Differentiable
Physics [89.81550748680245]
PasticineLabと呼ばれる新しい微分可能な物理ベンチマークを導入する。
各タスクにおいて、エージェントはマニピュレータを使用して、プラスチックを所望の構成に変形させる。
本稿では,既存の強化学習(RL)手法と勾配に基づく手法について評価する。
論文 参考訳(メタデータ) (2021-04-07T17:59:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。